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ABSTRACT 

Schiff base and its complexes with catalytic activity have rich diversity and the reactions catalysed by these catalyst were reviewed. 
These complexes are of salen type and some are of other (Salophen and Salcyclo etc.). Here we have the salen and salcyclo types of 
the complexes. The varied synthetic ligands are available for asymmetric catalysis. They have been highly enantioselective and of 
synthetic utility for transformation by catalytic behavior. Their catalysis involves many types of organic reactions such as Diels Alder, 
Aldol, Epoxidation, Polymerization and many more. In addition, they have exciting therapeutic activity. Literature shows very few 
oxidation reactions of benzyl alcohol and alkanol types of the compound.  
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INTRODUCTION 

e know that the catalyst (or biochemical 
enzymes) plays an important role in the 
catalysis of many kind of reactions. Schiff base - 

complex have catalyzed many Name reactions and other 
reactions too. Schiff base complex plays a key role in 
various homogeneous catalytic reactions and the activity 
of these complexes changes with the type of ligands, 
coordination sites and metal ions. 

Survey of the Literature have shown that the coordination 
compounds have been used in human life as analgesic1, 
antibiotic2, antioxidative3, antifungal4-5, antibacterial6-8, 
antiviral9, antifertility10, antitoxic against insects11, 
antiulcer12, anti-HIV13 and antitumor14-15, coating 
materials16, as catalysts in polymerization, oxidation, 
decomposition, hydrolysis and electro-reduction17-18, heat 
resistant adhesives19, electric insulating materials20, 
corrosion inhibitors21, dye and pigment industries22, 
pigments23, photographic developers24, plant growth 
regulators25-26, as models for molecules to absorb and 
release molecular oxygen reversibly similar to natural 
oxygen carriers like hemoglobin, hemocyanin and non-
heme proteins27. 

Chiral Schiff bases transition metal complexes, so-called 
salen-type ligands, are one of the most studied chiral 
catalysts in asymmetric synthesis because of their ability to 
act as chiral catalysts or as co-catalysts28-32. Schiff-base 

ligands derived from salicylaldehyde and chiral amines 
have been widely applied in enantioselective 
cyclopropanation of styrenes33, asymmetric aziridination 
of olefins34, enantioselective epoxidation35-36, 
enantioselective ring opening of epoxides37, borohydride 
reduction of aromatic ketones, asymmetric oxidation of 
methyl phenyl sulfide38, enantioselective oxidation of silyl 
enol and trimethylsilylcyanation of benzaldehydes39. The E. 
Merck, in particular, has successfully developed a process 
for the industrial manufacture of antibacterial drug 
Cilastatin using chiral copper (II) Schiff-base complexes 
derived from salicylaldehyde and chiral amine40. 

Literature reports revealed that the large number of Schiff 
base metal complexes exhibit catalytic activities. Now-a-
days it is well known that chiral Schiff base complexes are 
more selective in various reactions such as epoxidation, 
oxidation, aldol condensation and hydroxylation etc.41 
Progress on the catalytic activity of Schiff base - complexes 
in various reactions are outlined in this review. Some types 
of reaction catalysed by Salen42, salophen, salcyclo and 
different types of Schiff base catalysts are as follows:  

1) Diels–Alder reaction 
2) Epoxidation reaction 
3) Oxidation reaction 
4) Heck reaction 
5) Michael addition  
6) Aldol condensation reaction  
7) Polymerization reaction 
8) Hydrogenation reaction  
9) Hydrogenation of imine 
10) Hydrogenation of ketone 
11) Hydrogenation of alkene and alkyne 
12) Ring opening reaction of epoxide 
13) Cyclopropanation reaction  
14) Decomposition of hydrogen peroxide 
15) C-C, C-H and C-Metal bond formation 

Catalytic studies on Complexes of Organic Compounds: Part-5. Review on use of 
Chiral Schiff base Complexes as Catalyst
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16) Epoxide decomposition 

17) Hydroxylation of styrene 

Some of these reactions are explained below as an 
illustration. The present review mainly considered Cr and 
Cd complexes, and if suitable examples of these complexes 
were not available, other complexes were also included to 
illustrate the use of Schiff base metal complexes for 
different reactions.  

Diels–Alder reaction  

The first target-oriented synthesis of pyranoquinolines as 
potential antibacterial agents by electron demand Diels–
Alder reaction (ED-DA) was accomplished using high 
diastereoselective chiral salen–AlCl complex as catalyst43. 
Addition of molecular sieves in the reaction increases the 
yield and enantiomeric excess (ee). Use of the salen–AlCl 
complex catalyzed EDDA reaction in the presence of 
different mol% of molecular sieves in reaction mixture of 
2,3-dihydrofuran and 2-azadiene reported, which showed 
marginalized increase in the diastereomeric excess 
(Scheme 1).  

 

Scheme 1: Diels-Alder reaction using chiral salen-AlCl43. 

Schiff base complex catalyzed acylation of 4-furyl-4-N-
benzylaminobut-1-enes with maleic anhydride produced 
4-oxo-3-aza-10-oxatricyclo[5.2.1.0]dec-8-ene-6-carboxylic 
acid via amide formation through intramolecular Diels–
Alder reaction of furan (IMDAF) 44-45. The new family of 
enantiomerically enriched 1,1’-binapthyl 2,2’-diamine 
(BINAM)-derived Schiff base chromium(III) complexes 
(Figure 1 compounnd 4) were used as catalysts in Diels–
Alder reactions46. Chiral Schiff base lanthanum(III) 
complexes displayed catalytic activity in the asymmetric 
Diels–Alder reaction of 3-(2-propenoyl)-2-oxazolidinone 
with cyclopentadiene47. 

Chromium(III) complexes of binaphthyl chiral Schiff base 
were efficient catalysts in Diels–Alder reaction of 
protected 1,2-dihydropyridines. The reaction of 1-
phenoxycarbonyl-1,2-dihydropyridine with N-
acryloyloxazolidinone 5 in the presence of binaphthyl 

catalysts afforded endo-cycloadduct in 23-85 % ee and 61-
99 % ee (Scheme 2 reactions 1 and 2).  

 

4 

Figure 1: BINAM-derived Schiff bases chromium(III) 
complexes. BINAM = 1,1’-binapthyl 2,2’-diamine. 

 
 

                 5  6,  

 
 

                 5 
  7,   

Scheme 2: (reaction 1 and 2) 
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When acetone was used as a solvent, the endo-
cycloadduct showed 86 – 99 % yield and 70–85% ee except 
for (S)-[Cr(III)(L1)]OTf catalyst. The reaction of 1-
phenoxycarbonyl-1,2-dihydropyridine 8 with metha-

acrolein 9 in the presence of (S)-[Cr(III)(L6)]SbF6 catalyst 
produced endo-cycloadduct with 89% yield and 67 % ee 
(Scheme 3).  

 

  
         8                  9 

Scheme 3: The reaction of 1-phenoxycarbonyl-1,2-dihydropyridine 8 with metha-acrolein. 

Enantioselectivity marked was 10% higher than observed 
with 1,2-cyclohexyl analogue of (S)-[Cr(III)(L1)]SbF6 42,46. 
Asymmetric hetero-Diels–Alder reaction between [(2-
chlorobenzoyl)oxy]-acetaldehyde and [(trimethylsilyl) 
oxy]buta-1,3-diene was carried out using chromium(III) 

salen complexes using 4°A molecular sieves (at −30C) in 
non-coordinating ethereal solvent48. The nature of the 
catalyst showed a significant effect on both 
enantioselectivity and yield of reaction. The chiral Schiff 
base complexes of aluminium and titanium were also used 
as catalyst in Diels–Alder reactions48.  

Epoxidation reaction 

Chiral manganese(II) complexes of 1,2-
bis(salicylideneamino) cyclohexane entrapped in zeolite 
showed catalytic activity in the enantioselective 
epoxidation of alkenes49. The manganese(II) complexes of 

bis(2-pyridinaldehyde) ethylenediamine, bis(2-
pyridinaldehyde) propylenediamine ligands were used in 
epoxidation of olefins but reasonable epoxide selectivity 
was possible only in the presence of iodosylbensene (PhIO) 
oxidant49. Compounds 12-15 obtained from 10 and 11 
constituted a new class of salen based Schiff base ligands 
to form complexes with transition and heavy metal ions50. 
The manganese(III) complexes (Scheme 4) 23–26 
corresponding to Schiff base ligands 12-15 were chiral 
catalysts and used in asymmetric epoxidation of indene 
(Scheme 5)50. The manganese(III) salen complexes 
catalyzed the asymmetric epoxidation of conjugated 
olefins 23 and 25 (Scheme 6). The addition of bulky Lewis 
acids such as zinc tetraphenyl (ZnTPP) 27a or zinc 
octaethylporphyrin (ZnOEP) 27b (Scheme 7) formed stable 
supramolecular complexes, which showed enhanced 
catalytic activity of manganese(III) salen complexes51. 

 
Scheme 4: The synthesis of 2,3-bis(arylideneamino)-1,4-butanediol derivatives50 (19, 21) and of their manganese(III) 

complexes(24, 26). 

 
Scheme 5: The epoxidation of indene50 using the manganese(III) complexes of d-2,3-bis(di-t-butyl-salicylideneamino)-

1,4-butanediol and-dibenzyl ether. 
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Scheme 6: Epoxidation of conjugated olefins by 
manganese(III) complex51. 

 

Scheme 7. Structures of ZnTPP and ZnOEP 
supramolecular complexes 

McGarrigle and Gilheany52 have given a detailed discussion 
on the achiral and asymmetric epoxidations of alkenes 
catalysed by chromium and manganese-salen complexes. 
They mainly focused on the mechanism, catalytic cycle, 
intermediates, and mode of selectivity. Among these Mn-
(salen)-type complexes Jacobsen’s complex (Figure 2 
compound 28), has been demonstrated to be very 
effective for the enantioselective epoxidation of 
unfunctionalised olefins53-54. 

 

Figure 2: Jacobsen’s complex. 

Katsuki and co-workers55-56 first reported the synthesis and 
catalytic application of ruthenium(II)-complex, (Figure 3 
compound 29), containing chiral tetradentate (N2O2) Schiff 
base ligand in the asymmetric epoxidation of conjugated 
olefins in the presence of various terminal oxidants. 

 

Figure 3: Ruthenium(II)-complex, containing chiral 
tetradentate (N2O2) Schiff base ligand. 

Mezzetti and co-workers57-58 have carried out the 
asymmetric epoxidation using ruthenium(II) complexes 
containing tetradentate chiral Schiff base ligands with 
N2P2 donors, (Figure 4, compounds 30, 31), with hydrogen 
peroxide as terminal oxidant.  

 

Figure 4: Ruthenium(II) complexes containing tetradentate 
chiral Schiff base ligands with N2P2 donors. 

Oxidation reaction 

Chiral Schiff base ligands of ONO type with transition metal 
ions, i. e., titanium(IV), vanadium(IV), copper(II) or zinc(II), 
were used in various asymmetric chemical 
transformations. The addition of trimethylsilylcyanide to 
benzaldehyde, 32 in the presence of titanium(IV) ions 
resulted in trimethylsilyl cyanohydrins 34 in 40–85 % 
enantioselectivity (Scheme 8a)59. 
 

 

Scheme 8a: Chiral Schiff base catalyzed synthesis of 
trimethylsilyl cyanohydrins59 

Chiral Schiff base ligands of ON type with transition metal 
ion, i. e., Chromium(III) was used in the chemical 
transformation. The oxidation of benzylalcohol, 34a to 
benzaldehyde, 34c using 30 % H2O2 in the presence Cr 
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complex of chiral schiff base catalyst, 34b resulted in 
benzaldehyde, 34c in 75.0 % and some benzoic acid 
(Scheme 8b)60a. The oxidation of benzyl alcohol was used 

as model reaction using acetonitrile as solvent. The 
present reaction system was heterogeneous system of 
catalysis. 

OH
O

H
H

Br

Br O

H

Br

Br

N N

O

Cr

Cl

Solvent, 30 % aq. H2O2

Ar-COOH

BenzaldehydeBenzylalcohol

34a 34c

34b

34d  

Scheme 8b: Chiral Schiff base, 34b catalyzed synthesis of 
benzaldehyde60 

Chiral Schiff base ligands of ON type with transition metal 
ion, i. e., cadmium(II) was used in the chemical 
transformation. The oxidation of benzylalcohol, 34a to 
benzaldehyde, 34c using 30 % H2O2 in the presence Cd 
complex of chiral schiff base catalyst, 34e resulted in 
benzaldehyde, 34c in 51.33 % and some benzoic acid 
(Scheme 8c)60b. The oxidation of benzyl alcohol was used 
as model reaction using acetonitrile as solvent. The 
present reaction system was heterogeneous system of 
catalysis. 

OH
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I

I O

H
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Cl

Solvent, 30 % aq. H2O2

Ar-COOH

BenzaldehydeBenzylalcohol

34a 34c

34e

34d  

Scheme 8c: Chiral Schiff base, 34e catalyzed synthesis of 
benzaldehyde60b 

Schiff base complexes of chromium(III), manganese(II), 
iron(II), cobalt(II), nickel(II) and copper(II) were 
encapsulated in zeolites and tested for their activity in the 
formation of cyclohexanol and cyclohexanone by oxidation 
of cyclohexane61. Reaction was catalyzed more 
successfully with manganese(II) ions than other ions 
complexed with Schiff bases. The conversion of 
cyclohexane was enhanced from 2.4 % to 60 % with 
immobilized metal complexes, which indicated that 
zeolites-Y acted as cytochrome P-450 oxidation system61. 
The manganese(III) complexes of N,N-ethylene bis-
(salicylidene aminato)salen; N,N-ethylenebis-(5-
chlorosalicylidene aminato)Cl salen; N,N-ethylene bis-(5-
bromosalicylidene aminato) Br-salen and N,N-ethylene 
bis-(5-nitrosalicyli-2,2-diene aminato) NO salen were 
encapsulated in zeolites-Y for aerobic oxidation of styrene 
to benzaldehyde, styrene oxide and phenyl 
acetaldehyde62. The cobalt(II) complexes were effective in 
the oxidation of reactive substrates, such as aldehydes and 
phenols. The phenoxy radicals were assumed to be 
responsible for the oxidation of phenols in the presence of 
cobalt(II) complexes63. These complexes showed high 
catalytic activity in the oxidation of phenols in super critical 
CO2, which suggested that this high activity of cobalt(II) 
salen complex in super critical CO2 would expand the range 
of substrates for oxidation. The oxidation resistant 
substrates such as hydrocarbons and lignins could be 

oxidized using these catalysts in super critical CO2
64-65. The 

iron, manganese and chromium ions complexes of meso-
tetrakis(2,6-dichloro-3-sulfophenyl)-porphyrin chloride 
Schiff base were used as catalyst in the presence of 
hypochlorite as terminal oxidant65. Cobalt(II) salen 
complexes were also used as catalyst in oxidation of 2,6-
di-tert-butylphenol (2,6-DTBP) and 3,5-di-tert-butylphenol 
(3,5-DTBP) in super critical CO2

66. The conversion and 
catalyst selectivity were studied as a function of 
temperature, pressure, and concentration of catalyst and 
terminal oxidant. Selectivity in favour of oxygen transfer 
product 2,6-di-tert-butyl-1,4-benzoquinone (DTBQ) 36 
over self-coupling phenoxy radicals (Scheme 9) was 
observed66 on varying the concentration of oxygen and 
total pressure.  

 

Scheme 9: Cobalt(II) salen catalyzed aerobic oxidation of 
DTBP66, DTBP = 2,6-di-tert-butylphenol. 

The selectivity in oxidation remained unaffected over a 
wide range of temperature and concentration of catalyst. 
The dioxygen complex as effective oxidant in both initial 
radical formation step and in oxygenation of phenoxy 
radical was studied but no direct reaction was found 
between phenoxy radicals and O2. The observed behaviour 
of radicals has provided support for the mechanism 
proposed for these reactions (Scheme 10)66-67.  

 

Scheme 10: Proposed reaction mechanism for the 
oxidation of DTBP by cobalt(II) salen66-67. DTBP = 2,6-di-
tert-butylphenol. 
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Waldemar et al. showed that4 also catalyses the 
asymmetric oxidation of silyl ketene acetals in high 
enantioselectivity39. 

In 1986 Nakajima et al. studied the application of chiral 
Schiff base complexes in enantioselective sulfide 
oxidations68. Using tetradentate Schiff base-
oxovanadium(IV) complex, (Figure 5, compound 38), as 
catalyst, they could achieve an enantioselectivity of 42% ee 
in the oxidation of methylphenyl sulfide to the 
corresponding sulfoxide. 

 

38 

Figure 5: Schiff base-oxovanadium(IV) complex. 

Titanium(IV), vanadium(IV), copper(II) or zinc(II) 
complexes of chiral Schiff base ligands of –O-N-O- type 
were used in various asymmetric chemical 
transformations60,69 The binuclear palladium Schiff base 
complex, (Figure 6, compound 39), was found to be 
effective catalysts in direct oxygenation of 
unfunctionalized hydrocarbons and phenols70-74. 

 

39 

Figure 6: The binuclear palladium Schiff base complex. 

Co(salen) and its analogues, (Figure 7, compound 40), have 
been used for catalyzing the oxidation of phenols and 
alcohols with dioxygen as oxidant75. To efficiently bind 
dioxygen and to be catalytically active, Co(salen) needs an 
axial ligand. The dioxygen is coordinated orthogonally to 
the square planar coordination sphere of Co(salen). The 
axial ligand is needed to fill the sixth coordination site, 
opposite to dioxygen. Pyridine is the most common axial 
ligand used in the Co(salen) catalysed oxidation 
reactions76. 

 

40 

Figure 7: Co(salen) complex. 

Heck reaction 
Palladium(II) complexes of nitrogen Schiff base ligands 
showed higher catalytic activity in Heck reaction compared 
to commercially used phosphene Schiff base complexes77. 
High yields of the E-cinnamates and E-stilbenes were 
obtained by the Mizoroki–Heck reaction with Pd(II) 
complexes of 8- hydroxyquinoline(a), 41, dimethyl 
glyoxime(b), and picolinic acid (c),ligands. 

 

              a                 b                          c 

41 

Metal complexes of the Schiff bases derived from 
quinoxaline-2-carboxaldehyde and 3-hydroxyquionxaline-
2-carboxaldehyde are rare78-82. However there are many 
reports on the synthesis, biological and other applications 
of the compounds having quinoxaline rings. So a brief 
discussion on these types of compounds is included in this 
review. 

Michael Addition 

Belokon82 et al., have elaborated of a new type of a 
substrate based on the Ni(II) complex of a Schiff base of 
dehydroalanine, 42, and Michael addition of nucleophiles 
to it, leading to the synthesis of racemic α-amino acids 
(Scheme 11). 

 

Scheme 11: Michael addition of various nucleophiles 43a-
g to substrate 42. 
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Aldol condensation reaction 

Aldol condensation between ketones and aldehydes is an 
easy way for carbon-carbon bond. Metal oxides have been 
used as catalysts in difficult Aldol condensation reactions 
with acetaldehydes or formaldehydes83-84. Pyridoxal-
catalysed aldol reaction of amino acid with aldehydes or 
ketones is a biologically important process to add new 
carbon-carbon bonds. The Aldol condensation of glycine 

and acetaldehyde was catalyzed using pyridoxal as 
catalyst, which produced a significant amount of threonine 
and aldothreonine as reaction products84-85.  

Titanium(IV) binaphthyl(Di-t-butylsalicylicacid, DTBSA), 
Schiff base complexes showed activity in enantioselective 
aldol condensation of dienolate with a variety of aldehydes 
46 – 49, 50 - 53 (Reactions 1 and 2 in Scheme 12), which 
produced about 88–97 % ee86-87. 

  

 

   …1 

  46 – 49    R’ = Et, Me.   ee , 88 - 97 %  

 + 
  . . . 2 

 45,47,48,50 – 53       ee, 80 - 94 %  

 
     46           45            46          47         48      49 

 
   50         51       52       53 

 
                    54                 55             56   

Scheme 12 : Reactions 1 and 2 and various aldehydes 46 - 49, 50 – 53 used. 

These complexes were also used as catalysts in the aldol addition reaction between CH2C(OMe) Me and aldehydes 47 – 49, 
54 – 56, which showed 95–99% ee (Scheme 13).  

   
 

47–49,44–66  ee, 95 - 99 %            …3 

       

        47          48      49            54          55       56  

Scheme 13: Reaction and various aldehydes 7 – 9, 14 – 16 used. 

To facilitate the separation of catalyst in aldol addition 
reactions between silyl ketene, acetals and aldehydes, 
polymer supported chiral binaphthal Schiff base 
titanium(IV) complexes were used, which showed 26 % 
ee88. Recently aluminum(III) chiral complexes of 
binaphthal Schiff base ligand were also used to catalyze the 
aldol addition/acyl transfer reactions between 5-
methoxyoxazoles and aldehydes89, which afforded 
corresponding (4S, 5S)-oxazoline products with 98 % ee 
and 60 % turnover number. Schiff base complexes of 

aluminum(III) were active in the reaction between 5-
methoxyoxazoles and benzaldehydes to produce optically 
active cis-oxazoline adducts with > 99% ee89. 

Polymerization reaction 
Drozdzak et al. reported a detailed discussion on catalytic 
activity in the atom transfer radical polymerization and 
ring opening metathesis polymerization of various 
substrates using Ru-catalysts having salicylaldiminato-type 
Schiff bases as one of the ligands,(Figure 8 compound 
57)90. 
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Polymethylmethacrylate was prepared in presence of 
Cr(III) and Ni(II)salen complexes as catalysts for the 
controlled radical polymerization of the 
methylmethacrylate monomer91. 

 
Figure 8: Ru-catalyst with salicylaldiminato-type Schiff 
base as aligand. 
Hydrogenation reaction 

A series of chiral N4-Schiff bases, containing amine or 
sulfonamide functionalities has been synthesized by 
Karame et al.92. Coupled with ruthenium catalysts, these 
Schiff bases induce interesting results in the hydrogenation 
of acetophenone. The asymmetric hydrogenation reaction 
was carried out under hydrogen pressure (p = 30 bar) at 
room temperature in the presence of the chiral catalyst 
prepared in situ. 

Hydrogenation of imines 

Venkatachalam and Ramesh also reported the transfer 
hydrogenation of imines to amines mediated by 
ruthenium(III) bis-bidentate Schiff base complexes93. 

Hydrogenation of ketones 

Schiff base complexes of transition metals are efficient 
catalysts in carrying out asymmetric reduction of dialkyl 
ketones94-97. The catalytic activity in the transfer 
hydrogenation of aliphatic and aromatic ketones in the 
presence of isopropanol and KOH has been investigated 
with ruthenium(III) Schiff base complexes of general 
formula [RuX(EPh3)(LL’)] where X = Cl or Br, E = P or As and 
LL’ = [ONNO] donor of the heterocyclic Schiff base ligands, 
(Figure 9 compounds 58-60)98. 

 

Figure 9: Ruthenium(III) Schiff base complexes of general 
formula [RuX(EPh3)(LL’)] where X = Cl or Br, E = P or As and 
LL’ = [ONNO] donor of the heterocyclic Schiff base ligands. 

Hydrogenation of alkene and alkynes 
A series of palladium(II) complexes of Schiff bases with the 
nitrogen ligands have been synthesised and their catalytic 
activity in the hydrogenation of alkenes and alkynes in mild 
conditions (with 1 atm dihydrogen pressure at 40 °C) has 

been studied by Costa et al.99. Two representative 
examples of these Schiff base complexes are given below 
(Figure 10 compounds 61and 62). 

 

Figure 10: Palladium(II) complexes of Schiff bases with the 
nitrogen ligands. 

Ring opening reaction of epoxides 
The ring-opening of cyclohexa-1,4-diene monoepoxide 
was carried out by Jacobsen’s group100 under solvent free 
conditions in presence of 7.5 mol% of (Figure 11 
compound 63) and azidotrimethylsilanolate to produce 
the azido silyl ether in 92% enantiomeric excess(Scheme-
14). 

 

63 

 

Scheme-14: Ring-opening reaction of epoxide 

Jacobsen also discovered101 that the Co(salen) complex 66 
was active in the hydrolytic kinetic resolution of racemic 
epoxides which enables access to terminal epoxides and 
diols in high enantiomeric purity (Scheme 15). 

O

N N

O

Co

* *

66

OH2

O

Cl

O

Cl Cl

(0.7 mol)

H2O  (0.55 equi.)

45% yield, 99 % co 45% yield, 99 % coracemic

    67 68a 68b

OH

OH* *

 

Scheme 15: Resolution of racemic epoxides. 
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Cyclopropanation reaction The catalytic cyclopropanation 
of olefins using diazo compounds has been one of the 
highlights since Nozaki and co-workers introduced the use 
of transition metal catalysts for this purpose about 55 
years ago102,103. 

Application: Practical application include the synthesis of 
2,2-dimethylcyclopropane carboxylate from isobutene104, 
a key step in the commercial production of cilastatin 
(Scheme 16) and of the esters of chrysanthemic acid105,106. 

 

Scheme 16: Synthesis of Cilastatin 

Cilastatin is a dehydropeptidase and acts as an in-vivo 
stabilizer of the carbapenem antibiotic imipenem with 
achiral diazoeasters. Similarly, the chiral ruthenium 
complexes discovered for cyclopropanation include many 
ruthenium chiral Schiff base complexes107,108. 

In 2002, another type of highly enantioselective and 
diastereoselective cyclopropanation catalyst was reported 
by J A. Miller and co-worker. Schiff base ligands containing 
chiral centers were prepared, and implemented on 
runthenium resulting in chiral Ru(II) complexes. These 
complexes have two pyridine ligands at axial positions. By 
using EDA, trans-isomers in a highly enantioselective way 
were (obtained in all case at least 10.6:1). These 
compounds are also very efficient catalysts for the 
asymmetric cyclopropanation of both electron rich and 
electron deficient olefins. It was observed that side 
reactions barely occurred(dimerization products). 

 

Scheme 17: Chiral Schiff base ruthenium complexes 
(compound 72) 

A Ru (II) catalyst with a chiral PNNP-type ligand was 
reported to highly increase cis enantioselectivity in 
cyclopropanation when styrene or its derivatives were 
used as substrates; especially, when they carry an electron 
donating group at the para-position. From this result, the 
electronic tuning of the ligands could optimize the results 
for asymmetric cyclopropanation. Also the detection of 
and intermediate by 1H and 31P NMR was successful. 

 

Scheme 18: Ru (II) catalyst with a chiral PNNP-type ligand 
(compound 72) reported by Mezzetti. 

Decomposition of Hydrogenperoxide 

Using the aqueous hydrogen peroxide in the (salen)Mn(III) 
catalyzed epoxidations is related to the hydrogen peroxide 
decomposition (homolitic cleavage of O–O bond) catalyzed 
by the salen itself109. The tetradentate Schiff bases N,N′-
bis(salicylidene) ethylenediamine(salen), N,N-bis-
(salicylidene) hexylenediamine(salhex), and N,N′-
bis(salicylidene)-o-phenylenediamine(sal-o-phen) are very 
strongly adsorbed by cation exchange resins (Dowex-50W) 
with manganese(II) as a counter ion, forming stable 
complexes. The kinetics of the catalytic decomposition of 
H2O2 in presence of these complexes has been studied in 
aqueous medium. The decomposition reaction is first 
order with respect to H2O2 in the case of salen and sal-o-
phen and third order in the case of salhex. The greater the 
ligand methylene chain length or the greater the steric 
effect of the ligand, the greater will be the rate of reaction. 
The reaction is governed by the entropy of activation. A 
reaction mechanism is proposed109. 

Carbon-carbon, carbon-hydrogen and carbon-
heteroatom bond formation 

The Schiff base approach afforded quite active and stable 
ruthenium catalysts successfully initiating a variety of 
organic transformations spanning carbon-carbon, carbon 
hydrogen and carbon-heteroatom bond formation110. 

Epoxide decomposition 

The hydrolysis of styrene oxide seems to be the main 
pathway to the diol. This was confirmed by an experiment 
employing the usual conditions and using styrene oxide as 
the substrate. When styrene oxide is treated with H2O2 in 
acetone, no epoxide is degraded. In the presence of 1 
mol% of ligand and 1 mol % of Mn(ClO4)2.6H2O, after 1 h, 
18 % of the initial amount of epoxide is degraded.  

Addition of base increased the decomposition of H2O2 and 
yields dropped dramatically (< 5%). Hydrolysis of epoxides 
is a common problem in epoxidations using H2O2

111,112. 
Therefore pyridine is used as additional base and ligand in 
rhenium catalyzed epoxidations113. Instead, addition of 
base (NaHCO3 or triethylamine) did not lead to improved 
catalytic activity or suppression of epoxide hydrolysis.  
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Scheme 19: Decomposition of styrene oxide under 
conditions employed in catalytic Epoxidation reaction. 

Hydroxylation of styrene 

The metal complexes of chiral Schiff base ligands showed 
stereoselectivity in organic transformation like the 
hydroxylation of styrene: the enantioselective 
hydroxylation of styrene was the first organic reaction to 
involve a metal complex of a binaphthyl Schiff-base ligand 
as catalyst114. In 1988, Nishinaga and co-workers reported 
that (R)-[CoII(Ln )] (n = 1, 6) (Scheme 20) can catalyze 
hydroxylation of styrene with dioxygen115. 

 

Scheme 20: Cobalt schiff base complexes used as catalysts 
in oxygenation of styrene 

The reactions were conducted in the presence of alcohol, 
affording optically active 1- phenylethanol in 30 % yield 
and 38 % ee for catalyst (R)-[CoII(L5 )] as more efficient one 
(Scheme 21). 

 

Scheme 21: Hydroxylation of styrene with(R)-[CoII(L5)]. 

CONCLUSION 

The present review paper gives an overview of catalysis 
properties of chiral schiff base metal complexes 
synthesized and used in various reactions. The compounds 
synthesized from the Chiral amines and their metal 
complexes are useful for many applications such as Diels–
Alder reaction, Epoxidation reaction, Oxidation reaction, 
Heck reaction, Michael addition, Aldol condensation 
reaction, Polymerization reaction, Hydrogenation 
reaction, Hydrogenation of imine, Hydrogenation of 
Ketone, Hydrogenation of alkene and alkyne, Ring opening 
reaction of epoxide, Cyclopropanation reaction , 
Decomposition of hydrogen peroxide, C-C, C-H and C-
Metal Bond formation, Epoxide Decomposition and 

Hydroxylation of styrene etc. In some cases these chiral 
schiff base serves to build a chemical skeleton for many 
intermediates. Thus, this review may be useful to many 
researchers for further developments of catalysis 
properties of chiral schiff base metal complexes and useful 
to study their varied reactions in near future. 
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