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ABSTRACT 

Research at the Division of Environmental Microbiology has helped identify possible bacterial key-organisms with efficient nutrient 
removal traits during the past few years. The retention, growth, and maintenance of biological activity within the procedure are 
necessary for the efficient utilisation of these organisms for improved nutrient removal in secondary wastewater treatment 
applications. This may be done by immobilising the organisms using the right technique. (e.g- Trickling filter). Locate the 
microorganisms that are generating biofilm during secondary wastewater treatment and separate them from those sources. As part 
of earlier research efforts at the Division of Environmental Microbiology, a variety of effective nutrient-removing bacteria have been 
identified from various wastewater treatment settings. The initial step is always to grow the chosen microorganisms on a surface 
substrate. This is done with the intention of studying the time-course of biofilm development, interspecies interactions, the matrix 
composition, or the genetic expression of biofilm bacteria. Following water treatment, the amount of BOD and COD will be evaluated. 
The mechanisms of initial adhesion, biofilm development throughout time, dynamics and properties of extracellular polymeric 
substances (EPS) and exopolysaccharides, nutrient removal activity1, and the influence of bacterial interactions were studied. The 
results demonstrated that if a proper nutrition supply was provided, all of the tested bacterial strains could form a single strain biofilm 
and then check the level of BOD and COD. This study emphasised the stages in producing single or mixed strain biofilms as well as the 
importance of interactions on biofilm functionality. The information presented here can be used to model biofilm systems and as a 
tool for choosing bacterial strains and use it in a wastewater treatment process.  
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INTRODUCTION 

espite the fact that all known living forms require 
water, ecological destruction and water pollution 
are both serious issues. Water pollution has 

become a major worldwide concern as a result of 
industrialization, globalization, population expansion, 
urbanization, and conflict, as well as increased luxury and 
lavish lifestyles. Eutrophication of lakes and the ocean, 
brought on by nutrient runoff from industries, agriculture, 
and human activity, poses a hazard to the preservation of 
biodiversity and public health. Therefore, biological 
wastewater treatment is crucial for the health of our water 
bodies.3 

Many countries were devastated by cholera and typhoid 
fever epidemics that broke out in the middle of the 19th 
century. Sewer systems were built in a number of major 
cities as a result of the growing understanding of the 
function that microorganisms and sanitary systems play in 
the transmission of disease.1 A need for wastewater 

treatment arose in the late 19th century as a result of the 
serious contamination of rivers and lakes caused by the 
enormous population growth in urban areas. The primary 
treatment—screens, grits, strainers, and settling tanks—
was the principal component of the first treatment 
facilities utilised in Europe.2 

The primary treatment—screens, grits, strainers, and 
settling tanks—was the principal component of the first 
treatment facilities utilised in Europe. As early as the 
1880s, a full-scale biological treatment plant using the 
biofilm technology (trickling filter) was functioning in the 
United Kingdom, which was at the time the world leader in 
water treatment.1 Throughout the first half of the 
twentieth century, activated sludge technology and 
modified forms of the trickling filter were incorporated 
into Europe's secondary biological wastewater treatment 
systems.2Diverse strategies and procedures that disrupt 
bacterial adhesion, bacterial communication systems 
(quorum sensing, QS), and Biofilm matrices have been 
used to eradicate hazardous biofilms. However, biofilms 
also have useful applications in a number of industries, 
such as plant protection, bioremediation, wastewater 
treatment, and corrosion inhibition, among others.5 

BIOFILM  

A biofilm is an assembly of microbial cells with a surface 
attachment which is contained in a matrix of extracellular 
polymeric molecules.4 
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Typically, microorganisms were supposedly discovered in 
1684 by Antoni van Leeuwenhoek, the first person to 
publish microscopic observations of microorganisms. He 
can be attributed with the discovery of microbial biofilm 
after making the initial observation of bacteria on tooth 
surfaces using a simple microscope. The earliest recorded 
observations of microbes "connected in layers" were not 
made until the 1940s, despite the fact that surface-
associated communities are where microorganisms thrive 
most frequently on Earth. Research on "microbial slimes" 
accelerated in the 1960s and 1970s, although the name 
"biofilm" was not widely adopted until 1984.3 Over time, 
different interpretations of the term "biofilm" have been 
put forth. According to the all-knowing encyclopaedia 
Wikipedia as a biopic is “a structured community of 
microorganisms encapsulated within a self-developed 
polymeric matrix and adherent to a living or inert 
surface”.3 Biofilms can appear in the form of dental plaque, 
slippery stream rocks and pebbles, slimy coatings in 
showers or on boat hulls, pus on infected wounds, or the 
mass obstructing water distribution pipes in your daily life. 
Extracellular polymeric substances (EPS), which are 
created by bacteria in biofilms and serves as the 
scaffolding for the structural matrix of the biofilm, are 
what keep cell aggregates together.2 Even though it 
consumes a lot of energy, the production of EPS under 
growth-restrictive conditions highlights the benefits of 
being in a biofilm for bacterial cells. The biofilm matrix 
shields the bacterial cells from stressors like antimicrobials 
and the environment by acting as a physical barrier.2 

Need of Biofilm to Treat Wastewater  

Compared to suspended growth systems, biofilm systems 
for wastewater treatment provide a number of 
advantages. The advantages of biofilm treatment 
processes include operational flexibility, a small footprint 
requirement, faster hydraulic retention times, resistance 
to environmental changes, longer biomass residence 
times, higher active biomass concentrations, improved 
ability to break down recalcitrant compounds, and a 
slower microbial growth rate, which results in less sludge 
production.11 

In the process of treating wastewater, biofilms use a 
variety of removal processes, including biological 
degradation, biosorption, bioaccumulation, and 
biomineralization. Components of the biofilm matrix have 
been discovered to efficiently biosorb both heavy metals 
and organic solvents.10 Reactors that utilise the natural 
microbial flora or specific strains of microorganisms may 
get rid of items like mixed pharmaceutical industry 
effluent, n-alkenes, carbon tetrachloride, and 
chlorophenols.11 

Constituents of Bacterial Biofilm 

Bacterial biofilms are groups of bacteria that have formed 
a self-made matrix and are affixed to a surface or to one 
another. The biofilm matrix is made up of polysaccharides, 
proteins, and fibrin (like alginate), and eDNA. Bacterial 

biofilms are complex bacterial colonies that attach to 
surfaces and are kept together by an extracellular polymer 
matrix that is mostly composed of polysaccharides, 
proteins, and DNA.7 

The formation of bacterial biofilm is a complicated process 
and can be delineated in five main phases: 

(i) Revocable attachment phase, during which bacteria 
attach to surfaces in an unspecific manner.9 

(ii) During the irreversible attachment phase, 
lipopolysaccharide and fimbriae, two bacterial 
adhesins, engage between bacterial cells and a 
surface (LPS).8 

(iii) Production of extracellular polymeric substances 
(EPS) by local bacterial cells.9 

(iv)  Biofilm maturation stage in which bacterial cells 
produce and release signalling molecules in order to 
recognise one another, resulting in the creation of 
microcolonies and biofilms.9 

(v) The dispersal/detachment phase is when the 
microbial cells return to their independent being 
lifestyle after leaving biofilms. The development of 
biofilms is detrimental to the food, beverage, 
medical, marine, and other sectors.8 

Mechanism of Production 

Biofilm formation and development is a fascinatingly 
complicated process that involves altered genetic 
genotype expression, physiology, and signal molecule-
induced communication. In the majority of moist 
environments, biofilms can form on biotic or abiotic 
surfaces. There are several unique phases that are vital to 
the biofilm generation process, and the most important 
ones have been simplified.6 Aquatic surfaces often develop 
a conditioning coating of adsorbed organic and inorganic 
compounds.7 Chemotaxis or Brownian motion are two 
methods by which bacteria move toward the surface. As a 
result, the bacteria briefly interact with the surface. Van 
der Waals forces, for example, are general interacting 
forces, electrostatic forces, hydrogen bonds, and Brownian 
motion forces are responsible for this. The cells will be 
firmly attached to the surface by the extracellular 
polymeric molecules that develop there. Although this 
situation is occasionally referred to as having an 
irreversible attachment, only when there is no physical or 
chemical stress is this true. Two common techniques for 
attaining long-lasting attachment are the release of 
specific macromolecule adhesins that aid molecular 
binding or exopolysaccharides that form complexes with 
the surface material.10 A significant component of these 
proteinaceous adhesins are the sheet-rich, water-insoluble 
amyloid fibrils seen in 5-40% of the strains in both 
freshwater and wastewater treatment biofilms. The initial 
attachment is influenced by a variety of short-range forces, 
including hydrophobic contacts, covalent, hydrogen, and 
ionic connections, among others.14 
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Due to repelling electrostatic forces, the initially attached 
cells seldom ever make direct contact with the surface; 
instead, secreted polymers bind the cells to the surface 
substratum. Relatively quickly, connection goes from being 
reversible to being irreversible.12 Numerous studies claim 
that solid attachment occurs in a matter of minutes or less. 
After becoming fixed to the surface, the biofilm 
community grows and develops, or matures, as a result of 
the recruitment of planktonic bacteria and cell division. 16 

Microcolonies are created when surface-attached 
bacterial cells multiply and make additional EPS using 
nutrient content of the conditioning film and aqueous 
bulk.17 The microcolonies eventually grow to create a layer 
that covers the surface. When compared to planktonic 
cells, the gene expression pattern differentiates during 
biofilm formation.17 The formation of surface appendages 
involved in bacterial movement is down-regulated due to 
the immobility of cells in the biofilm matrix, but the 
generation of EPS and membrane transport proteins such 
porins is up-regulated.15 Quorum sensing, a signal 
molecule-driven communication mechanism, controls 
population density and the up- and down-regulation of 
genes.16 

Mature microorganism biofilms are dynamic, 
geographically and temporally diverse communities that 
can adopt various topologies depending on the 
surrounding environment (nutrient convenience, pH, 
temperature, shear pressures, osmolarity) and the 
makeup of the microbic consortium. Complex structures, 
such as mushroom-like towers surrounded by 
exceptionally pervious water pathways, aid in the passage 
of nutrients and atomic number 8 to the interior of 
biofilms, square measure commonly identified.17 The 
biofilm development method is fairly slow, many days 
square measure usually needed to succeed in structural 
maturity.18 A mature biofilm is a lively structure with a 
complex organisation that constantly adjusts to the 
environment, which implies that under bad conditions, 
bacteria may leave their sheltered life within the biofilm 
community in search of a different, more hospitable 
habitat to cool down in. This is referred to as 
detachment.19  

Significance of Secondary Wastewater Treatment 

The process of removing perishable organic materials (in 
solution or suspension) from waste or other supplies of 
waste product is known as secondary waste product 
treatment.20 The goal is to reach a specific level of effluent 
quality in a highly efficient waste treatment facility that is 
suitable for the intended disposal or utilisation potential.21 
Secondary treatment is frequently preceded by a "primary 
treatment" process in which settleable materials are 
removed via physical section separation. Biological 
processes frequently remove dissolved and suspended 
organic materials during secondary treatment, as 
determined by organic chemistry atomic number 8 
requirement (BOD).22 Microorganisms carry out these 

processes in either an extremely controlled aerobic or 
anaerobic process depending on the treatment 
methodology. 23 Perishable soluble organic pollutants 
(such bacteria and protozoa) are eaten by 
theseorganisms.99 

In secondary wastewater treatment methods, 
microorganisms are utilised to biologically remove 
contaminants from wastewater. Both aerobic and 
anaerobic secondary biological activities need different 
bacterial populations. Under specific conditions, coupled 
anaerobic-aerobic processes may also be used.24 There are 
so many processes are used in the secondary wastewater 
treatment like: aerobic, aerobic lagoons, activated sludge, 
rotating biological contactor, anaerobic.25 But in this 
project method we used the trickling filter.26 The 
description and the working process of the trickling 
process are underneath100: - 

Trickling filter: A mechanism wherein wastewater is 
dispersed over a fixed bed of material such as rocks, gravel, 
plastic substrate, and so on. The wastewater runs downhill 
over the media surface, where microorganisms develop a 
layer of biomass and consume water pollutants.27 

Design throat: This kind of filter is approx 1 to 2.6 m deep, 
however filters filled with lighter plastic infill may reach 
depths of up to 12 m.28 

The perfect filter material has a high surface-to-volume 
ratio, is light weight, affordable, and long lasting. When it 
is available, crushed rock or gravel is the least expensive 
option. The particles should have a diameter of 6 to 10 cm, 
with 90 to 95% of them being homogeneous.29 Typically, a 
material having a specific surface area of 91 to 150 m2/m3 
for plastic packaging and 46 to 60 m2/m3 for rocks is 
used.30 Larger pores (such those found in plastic packaging) 
provide for improved airflow and are less likely to clog. In 
order to prevent congestion, primary treatment is also 
necessary.31 

Adequate air flow is critical for ensuring adequate 
treatment performance and preventing odours. The 
underdrains ought to provide an air conduit even when the 
loading rate is at its highest.32 Effluent and additional 
sludge can be collected using a perforated slab that 
anchors the filter's bottom.33 To encourage wetting and 
flushing of the filter material, the effluent loop pattern is 
frequently used in the construction of trickling filters.34 

With time, the connected layer loses its ability to remain 
attached and sloughs off when the biomass thickens and 
the attached layer becomes oxygen-deprived. Under 
situations of maximal loading, sluffing will also occur.36 The 
collected effluent has to be cleaned in a settling tank to get 
rid of any biomass that could have gotten loose from the 
filter. 37 The wastewater characteristics, filter media type, 
ambient temperature, and discharge requirements all 
influence how much wastewater may be put to the filter 
(i.e., the hydraulic and nutritional loading rate).38 
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Figure 1: Design and the working process of Trickling Filter 

 
Overview of the working method: A biological reactor with 
a fixed bed that operates mostly under aerobic conditions 
is referred to as a trickling filter.39  Pre-settled wastewater 
is continuously sprayed or trickled over the filter. The bio 
layer that covers the filter material causes aerobic 
destruction of organics when water passes through the 
pores. Pollutants are removed from wastewater using 
trickling filters by filtration, adsorption, and assimilation. 40 

Wastewater should flow over the medium in a thin layer to 
give time for treatment. The medium serves as a substrate 
for the development of a biological film that is fed by the 
wastewater's nutrients.41 

Execution and Maintenance: 

1. In the event of a failure, a skilled operator must 
monitor the filter and repair the pump.42 

2. The sludge that builds up on the filter has to be 
regularly removed in order to avoid clogging and 
maintain a thin, aerobic biofilm.43 

3. To flush the filter, high hydraulic loading rates (flushing 
dosages) might be utilised. The field operation should 
be used to determine the best dose rates and flushing 
frequency.44 

4. Moisture must be maintained in the packaging. This 
might be an issue at night when the water supply is 
decreased if there are power outages.45 

5. Common problems with trickling filters include filter 
flies and snails eating the biofilm, which must be dealt 
with by backwashing and periodic flooding.46 

Boons of biological Trickling Filter: There has so many 
benefits of using the trickling filter, those are: 

i. Design compatibility: Biological trickling systems have 
a very simple design, consisting of just a few of pieces, 
such as a device or tower filled of filtering media such 
as stone, gravel, or sliced plastic, as well as a distributor 
(usually a rotating arm with sprinklers), as well as an 
under-drain system.93 Because biological trickling 
systems square measure quite easily from a 
mechanical standpoint, they will be somewhat easier 
and more cost-effective to repair and maintain than 
alternative effluent treatment technologies.47 

ii. Small footprint: A trickling filter system employs 
particle filtering material with a high surface area. As a 
result, the medium can hold a greater amount in a 
smaller space. As a result, biological trickling systems 
may be an excellent fit for urban areas or other 
locations where larger tracts of land are either too 
expensive or simply unavailable for the construction of 
typical wastewater treatment ponds.48 

iii. Good organic deportation: Reduce the organic content 
of a wastewater stream, which is usually quantified as 
biological oxygen demand, using biological trickling 
filters (BOD). In streams with moderate to high 
amounts of organic material, biological trickling filters 
are good for quickly reducing BOD levels. They can also 
remove some suspended particles.49 

iv. Energy intensity: The effectiveness of a high-rate 
trickling filter is determined by the organic loading rate 
as well as the recirculation ratio. There are numerous 
equations available for estimating plant efficiency 
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based on organic loading rate and recirculation ratio.44 
Most aerobic systems will require considerable energy 
consumption for aeration, agitation, or system 
pressure maintenance, whereas trickling bio filters will 
only require energy to pump water to the distributor 
mechanism.32 As a result, biological trickling systems 
often use less energy than other aerobic treatment 
technologies. If your municipal facility wants to 
decrease its energy use, biological trickling systems 
could be a great solution.50 

Drawbacks of the Biological Trickling Filter 

I. Problem of clogging: When solids enter the system 
and become entangled in the distributor mechanism, 
filter medium, or underdrain system.51 Clogs can 
impair the normal flow of air and water through the 
system., reducing system capacity and threatening 
the biofilm by depleting it of the circumstances 
required for optimum development and function.52 

II. Unbiddable flow rate:  Due to the clogging problem 
flow rate can be inflexible. Otherwise, A sustained 
flow of water through the system is necessitated via 
biological trickling filters.54 This keeps the biofilm wet 
and aerated all the times, enabling it to Continue to 
perform as planned. The system is subject to filter fly 
infections if there is insufficient moisture. 55 Sections 
of the biomass may become anaerobic when 
saturated with additional organics products, resulting 
in unpleasant odours and excessive sloughing of 
biofilm.56 

Applications:  

➢ Biofilm, as was already noted, is crucial to the 
treatment of wastewater. Additionally, it has 
several uses in a range of industries, including plant 
protection, bioremediation, and corrosion 
inhibition.57 

➢ Beneficial application of biofilm in the food and 
agriculture industries. 

➢ Application of biofilm in microbe-assisted 
bioremediation.58 

➢ Biofilm Reactors for Microbial Fermentation-Based 
Value-Added Product Production.57 

➢ The Use of Biofilm-Forming Bacteria to Improve 
Organophosphorus Fungicide Degradation.57 

Microbial strains which are used to remove pathogen and 
parasites in trickling filter 89 

Strains Removal (%) 

Salmonella 75-94 

Enterovirus 56-95 

Bacterial phage 40-91 

Entameoba histolytica 74-90 

Fusarium oxysporum 92.5 

• After a specific time of development, 
Paramicrosporidium saccamoebae took the position of 
the fungus Fusarium.60 

• The broad distribution of the functional genes for 
nitrogen removal (“amoA, nirK, nirS, napA, narG, and 
nosZ”) in MTF suggests that the simultaneous 
nitrification and denitrification (SND) mechanism is a 
crucial factor in nitrogen removal.61 

Microorganisms used in the biological treatment of 
wastewater: 

Species Genre Process involved 

Achromo 
bacter 

Bacteria Biofilters and activated 
sludge 80 

Alcaligens  Bacteria Biofilters, activated 
sludge, and sludge 81 

Bloodworm Metazoa Biofilters and treated 
sludge 80 

Flavo 
bacterium 

Bacteria Activated sludge, 
biofilters, sludge digester 
80 

Geotrichum Geotrichum Activated sludge and 
biofilters80 

Micrococcus Bacteria Activated sludge and 
biofilters 80 

Tubifex Metazoa Biofilters 80 

Reference: https://www.climate-policy-
watcher.org/wastewater-treatment/important-
microorganisms-in-wastewater-bacteria-and-fungi.html 

Recent advancement of research on biofilm production 
using microbial consortium: 

In recent years, attached growth methods for wastewater 
treatment have considerably improved. For the goal of 
removing organic matter (BOD) and pathogenic 
contamination, their applicability can be expanded to 
sustainable municipal wastewater treatment in rural areas 
and underdeveloped nations. This study's objectives are to 
evaluate certain packing media for biological trickling filters 
(BTFs) and create a simpler model to describe the BTFs' 
capability for BOD removal.62 

This study examined BTF with four distinct media, including 
stone, rubber, polystyrene, and stones, at two temperature 
ranges: 5–15°C and 25–35°C. At temperature ranges of 5–
15 and 25–35°C, respectively, the average removal of COD 
and BOD was greater than 80% and 90%, respectively.64 In 
low temperature range of 5-15°C, the geometric mean of 
faecal coliforms in BTF was decreased by 4.3, 4.0, 5.8 and 
5.4 log10, respectively, using polystyrene, plastic, rubber, 
and stone as filter medium. 65 
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Area of Advancement Details 

“A seasonal analysis 
of Staphylococcus 
aureus, methicillin-
resistant S. aureus, 
and the mecA gene 
in a municipal 
wastewater 
treatment facility” 

 

 

“Treatment for Staphylococcal 
disorders is under danger due to the 
emergence of methicillin-resistant 
Staphylococcus aureus (MRSA), in 
which the “mecA” gene causes 
resistance. The objectives were to 
ascertain how wastewater treatment 
methods affected “mecA” gene 
concentrations as well as the 
evolution of S. aureus and MRSA 
prevalence. Real-time PCR tests were 
used to examine a municipal 
wastewater treatment facility for the 
“mecA” gene, S. aureus, and MRSA. “68 

“At eight locations across the facility, 
water samples were taken on a 
monthly basis for a year to represent 
various components of the treatment 
process. At all sampling sites, the 
mecA gene and S. aureus could be 
found all year long. MRSA might also 
be found, although mostly during the 
first stages of therapy. Through inlet 
water cultivation, MRSA presence was 
confirmed. The mecA gene's 
concentration fluctuated across 
months and sample locations, but no 
discernible seasonal change could be 
seen. The mecA gene content was 
decreased in most months by the 
wastewater treatment procedure.”69 

“MRSA was discovered for the first 
time in a municipal activated sludge 
and trickling filter through molecular 
techniques and culturing, mostly in 
the early stages of treatment.”70 

“The wastewater treatment process 
reduces mecA gene concentrations, 
which can partly be explained by 
removal of biomass.”71 

“Detection of genes 
associated with 
antibiotic resistance 
in biofilms from 
wastewater, surface 
water, and drinking 
water” 

 

 

“Biofilms from wastewater systems, 
particularly from secondary of sewage 
treatment facilities, include high 
bacterial densities and variety. Surface 
water and drinking water distribution 
systems also produce biofilms The 
majority of research on antibiotic 
resistance in aquatic environments 
has been on bulk water and does not 
account for the condition in biofilms, 
which are many bacteria's preferred 
habitat.”72 

“In order to determine the prevalence 
of resistant bacteria and their 
resistance genes, biofilms from a 
sewage treatment plant, from surface 
water, and from drinking water from 
river bank filtrate were examined.”73 

“Determined were the populations of 
heterotrophic bacteria, Enterococci, 
Staphylococci, and 
Enterobacteriaceae. Resistance was 

assessed using both bacteria grown 
from biofilms and complete genomic 
DNA extracted from uncultivated 
biofilm populations.”74 

“By using PCR and Southern blot 
hybridization, it was possible to find 
the vancomycin-resistance gene, 
vanA, from enterococci, the 
methicillin-resistance gene, mecA, 
from staphylococci, and the -lactam-
resistance gene, ampC, unique to 
certain Enterobacteriaceae.”75 

“Utilising a trickling 
filter to biotreat 
nitrogenous 
compounds released 
in fishmeal plant 
exhaust gases” 

 

 

“Production of fishmeal has significant 
environmental concerns with odour 
emissions. In order to explore the 
biotreatment of low-loads of 
methylamines and ammonia, which 
are the principal ingredients of 
pungent exhaust gases generated by 
fishmeal processing facilities, 
laboratory-scale biotrickling filters 
(BTFs) were infected with microbial 
consortia obtained from sewage 
sludge.”76 

“An actual fishmeal plant emission 
including trimethylamine (TMA), 
dimethylamine (DMA), and 
monomethylamine (MMA) was tested 
on a BTF filled with ceramic rings. 
Following 30 days of operation, the 
highest elimination capacities (ECs) 
were 372 mg TMA m3 h1, 5.518 mg 
DMA m3 h1, and 1.038 mg MMA m3 
h1, with maximum removal 
efficiencies of 92% (TMA), 83% (DMA), 
and 95% (MMA).77 

“These findings indicated the 
possibility of odour removal by using 
BTFs inoculated with a methylotrophic 
microbial consortium to eliminate 
volatile amino-compounds.” 78 

CONCLUSION 

In this research, there has been an opportunity to treat the 
waste water in a organic way which is eco-friendly, 
exceptionally in low budget rather than other ways, there 
has a reuse of waste and grow microorganism. They can 
form biofilm to treat the wastewater.  The applicability can 
be expanded to sustainable municipal wastewater 
treatment in rural areas, factories and underdeveloped 
nations. In secondary wastewater treatment methods, 
microorganisms are utilised to biologically remove 
contaminants from wastewater. Both aerobic and 
anaerobic secondary biological activities need different 
bacterial populations. 
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