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ABSTRACT 

Bisphenol S (BPS) is a replacement bisphenol used instead of bisphenol A (BPA) to manufacture polycarbonate plastics, epoxy resins, 
and thermal papers utilized in storage and packaging of foodstuffs, beverages and drinking water. Consequently, leaching of BPS from 
the food contact materials into the comestibles, followed by absorption of BPS-tainted comestibles by small intestine becomes the 
predominant source of BPS contamination to humankind. Though, BPS is known to elevate oxidative stress, its effects on xanthine 
oxidoreductase (XOR) system mediated oxidative induction of proteins remains unexplored. Therefore, the present study aims to 
evaluate the effect of BPS on oxidation of proteins by involving XOR system in small intestine of male albino rats ex vivo. BPS exposure 
has been found to significantly (P ˂ 0.001) increase protein carbonylation; alter the activities of XOR system by augmenting the 
activities of cytosolic and mitochondrial xanthine oxidase (XO) and cytosolic xanthine dehydrogenase; and diminish the 
concentrations of cytosolic and mitochondrial nitrite in a dose dependent manner compared to the control group. These results 
indicate that BPS elevates protein carbonylation and diminishes nitrite concentration probably by XOR system mediated oxidative 
stress generation in mammalian small intestine.  

Keywords: Bisphenol S, Small intestine, Mitochondria, Protein carbonylation, Xanthine oxidase, Xanthine dehydrogenase, Xanthine 
oxidoreductase. 

 
INTRODUCTION 

isphenol S (BPS) is one of the replacement bisphenol 
compounds gradually taking over the place of 
bisphenol A (BPA) since the implementation of a set 

of restrictions on the latter compound due to the 
revelation of its potent endocrine disrupting capabilities1-

4. In the manufacturing of polycarbonate based plastics, 
polyvinyl chloride (PVC) plastics, epoxy resins and a variety 
of thermal papers, BPS is considered to be one of the major 
substitutes of BPA5-7. Utilization of BPS might also occur as 
an ingredient in polyethylene terephthalate (PET), in order 
to induce thermal rigidity in the polymer ester, widely used 
to manufacture soft drink and water bottles8.  

Among the aforementioned sources, polycarbonate based 
plastics, epoxy resin based inner coats in metal containers, 
thermal papers and thermal labels come in direct contact 
with the foods, beverages and drinking water packaged 
and stored within. Leaching of BPS from those BPS-
containing contact sites into the stored comestibles, 
followed by oral ingestion of BPS-tainted comestibles, 
leading to their absorption through small intestine is the 
predominant source of BPS contamination to human 
population9-15.  

Though, BPS has been introduced and is supposed to be 
served as a safe BPA-alternative, a number of its 
characteristics including its affinity for estrogen receptors, 
dermal penetrability, oral bioavailability and biological 
half-life exceed the levels of those parameters for BPA16-18. 
Moreover, another adverse feature of BPS is its ability to 
induce oxidative stress through reactive oxygen species 

(ROS) generation19-25. Furthermore, in our previous study, 
BPS has been found to alter activities of antioxidant 
enzymes and the status of biomarkers of oxidative stress 
in duodenum of rat26. Nevertheless, the specific sources 
leading to oxidative stress induction by BPS remains quite 
elusive. Xanthine oxidoreductase (XOR) system, present in 
high quantities in small intestine, serves as a well known 
ROS generating source in mammals27. On the contrary, oral 
ingestion followed by absorption through small intestine 
being the predominant source of BPS contamination, 
undoubtedly exposes the organ to the risk of BPS 
exposure9. However, the effect of BPS on XOR system 
mediated oxidative stress induction is not reported in 
literature. Therefore, the aim of the present study is to 
examine the effect of BPS on XOR system in small intestine 
of male albino rats ex vivo.  

MATERIALS AND METHODS 

Chemicals 

Analytical grade chemicals were used in this study. BPS 
(Purity 98%, CAS No. 80-09-1) and dimethyl sulfoxide 
(DMSO) were purchased from Sigma Aldrich, USA, and 
Merck Life Science Private Limited, Mumbai, India, 
respectively. 

Animals 

Sprague-Dawley strain of adult male albino rats, weighing 
around 120-140 grams was used to conduct this study. 
Animals were maintained in the animal house at 25-27°C 
temperature with approximately 12h light-dark cycle. They 
were provided with the access to standard laboratory diet 
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and water ad libitum. Recommended guidelines of 
Institutional Animal Ethics Committee were followed for 
performing experimentations. Animal sacrifice was 
performed by cervical dislocation after keeping them at 
fasting condition for overnight. 

Tissue collection  

Small intestine of the sacrificed animals was isolated after 
opening the abdominal cavity followed by separation of 
the muscularis layer to obtain visceral smooth muscle 
(VSM) cells used for either homogenate preparation or 
mitochondria isolation for performing the experiments28.  

Homogenate preparation 

The VSM homogenate (10% w/v) was prepared utilizing a 
homogenizer (Remi Elektrotechnik Limited, Vasai, India) at 
cold condition using 50mM phosphate buffer (pH 7.4) as 
the homogenization medium except for the protein 
carbonyl assay where 0.9% NaCl was used and during 
isolation of mitochondria where mitochondrial isolation 
buffer (pH 7.8) was used.  

Mitochondria isolation 

Mitochondria were isolated from VSM of small intestine by 
applying differential centrifugation technique29. 

Preparation of different doses of BPS  

DMSO was used as the vehicle to dissolve BPS. Four 
different doses of BPS dissolved in 10% DMSO solution, 
viz., 100µM, 200µM, 400µM and 800µM were used in this 
study. Dose selection was performed on the basis of our 
previous study26. 

Group division  

A total of six groups including the control group, the 
vehicle control group and four BPS-exposure groups, were 
established in this study. The control group was devoid of 
BPS or DMSO exposure whereas the vehicle control group 
was administered with 10% DMSO solution. BPS-exposure 
groups were administered with 100µM, 200µM, 400µM 
and 800µM doses of BPS in 10% DMSO solution and were 
named as BPS100, BPS200, BPS400 and BPS800 groups 
respectively.  

Incubation of homogenate and mitochondria 

The samples of VSM homogenate and mitochondria were 
separately divided into six groups in equal proportions and 
were incubated for 1h at 37°C in phosphate buffer (50mM, 
pH 7.4) after adding BPS or DMSO according to the desired 
concentrations as described in ‘group division’ section.  

Measurement of protein carbonyl content 

Protein carbonyl content was measured by following the 
standard method30,31. 3.2ml of 10mM 2,4-
dinitrophenylhydrazine (DNPH) solution dissolved in 2(N) 
HCl was added into 0.8ml incubated VSM homogenate and 
were kept in dark for 1 hour at room temperature. Then 
4ml of 20% cold tri-chloro acetic acid (TCA) was added and 
the mixtures were kept at ice cold condition for 10 minutes 

prior to centrifugation at 3000rpm for 5 minutes. This step 
was again repeated with 10% TCA solution. The excess 
DNPH was removed by thoroughly washing the pellets 
multiple times in ethanol-ethyl acetate (1:1 v/v) solution. 
Into the washed pellets, 1.6ml of 6M guanidine 
hydrochloride, dissolved in 50mM potassium phosphate 
buffer (pH 2.5), was added, mixed thoroughly and kept at 
37°C for 10 minutes. The preparations were finally 
centrifuged at 3000rpm for 10 minutes to collect the 
supernatant for measurement of absorbance at 370nm 
using a UV-VIS spectrophotometer (BIO-RAD, USA) against 
the sample blank tube, where 3.2ml of 2(N) HCl was added 
instead of DNPH solution. To compensate for the loss of 
protein present in the pellets during each step of washing, 
protein content in the supernatants was estimated by 
measuring absorbance at 280nm using a UV-VIS 
spectrophotometer and was determined from bovine 
serum albumin (BSA) standard curve prepared from 
measuring absorbance of known concentrations of BSA at 
280nm.  

Measurement of the activities of xanthine 
oxidoreductase system 

Incubated VSM homogenates of six different groups were 
separately centrifuged at 2000rpm for 10mins in cold, 
followed by collection of the supernatant that was again 
centrifuged at 10,000rpm for 40mins in cold to collect the 
final supernatant for estimating cytosolic xanthine 
oxidoreductase (XOR) activity. Xanthine oxidase (XO) 
activity was measured spectrophotometrically at 295nm 
and expressed as mUnits/min/mg of protein32. A final 
volume of 1.0ml assay mixture contained 50mM 
phosphate buffer (pH 7.8) containing 0.1mM xanthine and 
suitable quantity of incubated mitochondria or 
supernatant obtained from incubated VSM homogenate as 
the source of enzyme for determining the mitochondrial 
and cytosolic XO activities respectively. Xanthine 
dehydrogenase (XDH) activity was measured 
spectrophotometrically at 340nm through NAD+ reduction 
and expressed as mUnits/min/mg of protein33. A final 
volume of 1.0ml assay mixture contained 50mM 
phosphate buffer (pH 7.5) containing 0.3mM xanthine, 
0.75mM NAD+, 0.05mM sodium azide and suitable 
quantity of supernatant obtained from incubated VSM 
homogenate as the source of enzyme. XO+XDH activity 
was calculated as the cumulative activities of XO and XDH. 
XO/XDH and XO/XO+XDH ratios were calculated through 
dividing the activity of XO by XDH and by XO+XDH 
respectively. 

Determination of nitrite concentration 

Nitrite concentration was determined 
spectrophotometrically at 548nm by following the 
standard method34,35. 0.1ml of Griess reagent containing 
1% sulfanilamide in 5% phosphoric acid and 0.1% 
naphthyl-ethylenediamine dihydrochloride in 1:1 ratio was 
added into 0.3ml of incubated sample containing VSM 
homogenate or mitochondria followed by addition of 
2.6ml of deionized water and were kept in dark for 30mins 
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at room temperature. Dilution of samples were performed 
to get nitrite concentration in the range of 5-20µM. 
Absorbance of the mixture was measured 
spectrophotometrically at 548nm against the blank. Nitrite 
concentration was determined from the standard curve 
prepared from measuring absorbance of known 
concentrations of nitrite generated from aqueous solution 
of sodium nitrite at 548nm.  

Determination of protein content 

Protein contents of VSM homogenate and mitochondrial 
samples were estimated by following the standard 
method36.  

Statistical analysis 

Statistical analyses were performed on Microcal Origin 
(version 7.0 for Windows) software. Data were 
represented as mean ± standard error of the mean (SEM) 
after performing Tukey’s test of one way analysis of 
variances (ANOVA) to analyze significance difference 
between mean values of different groups. 

RESULTS 

Protein carbonylation 

BPS exposure has been found to significantly (P < 0.001) 
increase cytosolic protein carbonyl content in a dose 
dependent manner in VSM of small intestine of rat ex vivo 
in BPS exposure groups compared to the control and 
vehicle control group (Figure 1).  

 

Figure 1: Graphical representation of changes in cytosolic 
protein carbonyl content in VSM of small intestine of rat is 
shown. Control represents the control group, not exposed 
to BPS and DMSO; DMSO represents the vehicle control 
group exposed to 10% DMSO solution; BPS100, BPS200, 
BPS400 and BPS800 represent the BPS exposure groups 
exposed to respectively 100µM, 200µM, 400µM and 
800µM doses of BPS dissolved in 10% DMSO solution. 
Results are expressed as mean ± standard error of the 
mean (n=6); at the significance level *P < 0.001 vs. control 
and #P < 0.001 vs. vehicle control using ANOVA.  

Activities of xanthine oxidoreductase system 

Exposure to BPS has been found to significantly (P < 0.001) 
increase the activities of cytosolic and mitochondrial XO, 
cytosolic XDH, cytosolic XO+XDH; along with the cytosolic 
XO/XDH ratio and cytosolic XO/(XO+XDH) ratio in a dose 
dependent manner in VSM of small intestine of rat ex vivo 
in BPS exposure groups in comparison to the control and 
vehicle control group (Figure 2). 

 

Figure 2: Graphical representations of changes in the activities of xanthine oxidoreductase system in VSM of small intestine 
of rat. Activity levels of cytosolic xanthine oxidase (XO) (A), mitochondrial xanthine oxidase (XO) (B), cytosolic xanthine 
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dehydrogenase (XDH) (C), cytosolic xanthine oxidoreductase (XO+XDH) (D); and ratios of cytosolic XO/XDH (E) and cytosolic 
XO/(XO+XDH) (F) are shown. Control represents the control group, not exposed to BPS and DMSO; DMSO represents the 
vehicle control group exposed to 10% DMSO solution; BPS100, BPS200, BPS400 and BPS800 represent the BPS exposure 
groups exposed to respectively 100µM, 200µM, 400µM and 800µM doses of BPS dissolved in 10% DMSO solution. Results 
are expressed as mean ± standard error of the mean (n=6); at the significance level *P < 0.001 vs. control and #P < 0.001 
vs. vehicle control using ANOVA.  

Nitrite concentration 

Cytosolic and mitochondrial nitrite concentrations have been found to be significantly (P < 0.001) decreased following BPS 
exposure in a dose dependent manner in VSM of small intestine of rat ex vivo in BPS exposure groups in comparison to the 
control and vehicle control group (Figure 3). 

 

Figure 3: Graphical representations of changes in nitrite concentration in VSM of small intestine of rat. Concentrations of 
cytosolic (A) and mitochondrial (B) nitrite are shown. Control represents the control group, not exposed to BPS and DMSO; 
DMSO represents the vehicle control group exposed to 10% DMSO solution; BPS100, BPS200, BPS400 and BPS800 
represent the BPS exposure groups exposed to respectively 100µM, 200µM, 400µM and 800µM doses of BPS dissolved in 
10% DMSO solution. Results are expressed as mean ± standard error of the mean (n=6); at the significance level *P < 0.001 
vs. control and #P < 0.001 vs. vehicle control using ANOVA.  

DISCUSSION 

Carbonylation of proteins is a non-enzymatic process that 
occurs due to irreversible oxidative modification to protein 
molecules37. We have observed BPS-induced enhancement 
in cytosolic protein carbonyl content in this study. This 
observation corroborates with previous reports of BPS-
induced augmentation in protein carbonylation in rat liver, 
zebrafish brain, human granulosa KGN cells, and HepG2 
cells38,39,20,22. Increased level of protein carbonylation might 
hamper inherent functioning of various intracellular and 
membrane proteins even up to the level of partial or 
complete inactivation40. Through protein carbonylation, 
reactive carbonyl moieties including aldehydes, ketones 
and lactams are introduced within a protein that mediates 
alterations of polypeptide chain conformation37,41. Analysis 
of the mechanism of protein carbonylation suggests that 
oxidative induction caused by ROS is the principal causative 
factor. The association between increased ROS formation 
and enhanced protein carbonylation is so strong that 
presence of protein carbonyl content is regarded as a 
devoted biomarker for oxidative stress generation41. 
Oxidation of the side chains of certain amino acids or 
cleaving of peptide bonds in protein structure by the highly 
reactive and harmful form of ROS, hydroxyl radical (HO•), 
are the principal sources for yielding reactive carbonyl 
derivatives37,41. Specifically, arginine, lysine, threonine, 
proline and tryptophan are the major amino acids where 
carbonylation to their side chain preferentially occurs41.  

One of the predominant sources of HO• generation exists as 
an indirect outcome of the activity of XOR system. As 
presence of this enzyme system in intestine is very 
prominent, it is considered to notably contribute towards 
intestinal ROS production27,42. This system consists of 
molybdenum and flavin containing protein structure that 
shows both the XDH and XO activities performed by 
reversible inter-conversion between these two forms 
through oxido-reduction of cysteine residues43. Moreover, 
XDH can also be permanently converted to XO by protease 
mediated irreversible partial proteolysis42-46. Reduction of 
the cofactor NAD+ into NADH is performed solely by the 
XDH form during uric acid generation from purines47. 
Though, both the forms possess capability for reducing 
molecular oxygen (O2) into different forms of ROS, the 
effectiveness of XO is notably greater than that of XDH in 
this context42. Superoxide anions (O2

•−) are produced during 
generation of uric acid from the oxidation of purines 
catalyzed by XO activity using O2 as the cofactor44,47. The XO 
pathway has also been reported to be involved in O2

•− 
generation in rat skeletal muscle48. Reduction by one and 
two electron transfer to O2 respectively generates O2

•− and 
hydrogen peroxide (H2O2) by XO43,49. Reduction of O2 by 
transfer of three electrons generates HO•49. Moreover, 
generated H2O2 further participates in formation of 
additional quantity of HO• through Haber-Weiss reaction in 
presence of ferric ion (Fe3+)44,45. The iron storing protein, 
ferritin, present in mitochondria is capable of releasing Fe3+ 
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that might aid in HO• generation44. In addition to the 
cytosolic compartment, XO is also found in 
mitochondria44,50-55. Mitochondrial XO performs generation 
of O2

•− and H2O2 leading to mitochondrial ROS generation 
alongside the ROS production by mitochondrial electron 
transport chain44,56-58.  

BPS has been found to increase XDH and XO activities in 
cytosolic fraction, as well as to increase mitochondrial XO 
activity in this study. Furthermore, cytosolic XO+XDH 
activity, XO/XDH ratio, and XO/XO+XDH ratio have also 
been elevated following BPS exposure in this study. The 
increase in XO+XDH activity indicates an overall measure of 
induction of XOR system. Whereas, increased XO/XDH and 
XO/XO+XDH ratios demonstrate shift of the XOR system 
towards XO activity. It is noteworthy to mention that in 
healthy tissues, XDH is the dominating form of XOR 
system44. In contrary, prevalence of XO activity is associated 
with oxidative tissue injury52. Altogether, these 
observations strongly support the notion of ROS induction 
by BPS through involving the XOR system. Hence, it can be 
speculated that one of the routes of BPS-induced ROS 
generation occurs through the enhanced XOR activity 
mediated formation of ROS entities, which itself is triggered 
by BPS exposure.  

Furthermore, XOR also contains nitric oxide (NO) 
generating domain in its protein structure that leads to its 
inherent ability to direct NO formation42. The formation of 
NO is mediated through the nitrate reductase and nitrite 
reductase activities of XOR, reducing nitrate into nitrite and 
nitrite into NO respectively43. We have found that BPS 
exposure suppressed cytosolic and mitochondrial nitrite 
concentrations in this study. Consequently, NO generation 
is also expected to be altered by BPS exposure. This result 
corroborates with the previous report claiming about the 
NO suppressing characteristic of BPS59. However, in 
presence of O2

•− the generated NO reacts with the radical 
instantaneously, even before O2

•− gets the chance to be 
dismutated by superoxide dismutase60. Peroxynitrite 
(ONOO−), which is a highly reactive pro-oxidant compound 
reported to induce protein carbonylation, is generated from 
the reaction of NO with O2

•− at diffusion controlled rate43,60-

62. Therefore, the ROS arising from XO activity, as well as 
from other sources, is speculated to contribute towards the 
BPS exposure-induced decreased NO availability59. 

CONCLUSION 

From the results of this study it is concluded that BPS 
modulates the activities of xanthine oxidoreductase system 
to generate reactive oxygen species that might be involved 
in oxidative modification towards proteins to increase 
protein carbonylation as well as to diminish nitrite 
concentrations in the visceral smooth muscle of small 
intestine of rats ex vivo. This study reports the effects of BPS 
on xanthine oxidoreductase activities for the first time as no 
previous mention regarding this topic is reported in the 
literature. Future scope for further studies remains to 
evaluate the detailed mechanism of action of BPS on 

specific categories of reactive oxygen species generation 
involving this enzyme system.  
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