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ABSTRACT 

Green nanotechnology in cancer therapy refers to the use of environmentally friendly and sustainable nanomaterial and processes 
to diagnose, treat, and prevent cancer. Traditional cancer therapies often come with significant side effects and may harm the 
environment. Green nanotechnology aims to address these issues by developing sustainable and biocompatible solutions. One 
example of green nanotechnology in cancer therapy is the use of nanomaterials, such as nanoparticles, that can deliver drugs directly 
to cancer cells and thus biocompatible and non-toxic nanomaterials were developed for healthy cells, reducing the risk of side effects. 
Additionally, these nanoparticles can be engineered to specifically target cancer cells, improving the effectiveness of treatment. Green 
nanotechnology also incorporates eco-friendly manufacturing processes; by utilizing greener synthesis methods and reducing the 
reliance on hazardous chemicals, researchers strive to minimize the environmental impact of nanomaterial production.  Green 
nanotechnology researchers explore innovative approaches to cancer therapy, such as using nanomaterial to enhance imaging 
techniques or developing nanoparticles that can detect and remove cancer cells more efficiently. Green nanotechnology in cancer 
therapy focuses on developing sustainable and environmentally friendly approaches to diagnose, treat, and prevent cancer. By 
utilizing biocompatible nanomaterial and eco-friendly manufacturing processes, researchers aim to improve cancer treatments while 
reducing their impact on the environment.  
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1. INTRODUCTION 

Green nanotechnology 

 recent initiative known as "green nanotechnology" 
seeks to replace current products with current, 
environmentally friendly nanoproducts that are 

more persistent lifetimes by utilizing nature's ability to 
eliminate or the reduction of hazards involved with 
utilization of nanomaterials that simulate the well-being of 
the humans along with the nature 1,2. Utilizing fewer 
resources and renewable inputs whenever possible, 
minimizes the use of fuel and energy. Additionally, by 
minimizing raw materials, energy, and water in 
conjunction with the reduction in greenhouse emissions 
and hazardous waste, the goods, processes, and 
applications were likely to provide ample matches toward 
natures protection. The key benefits of green 
nanotechnology are decreased consumption of non-
renewable raw resources, less waste and increased energy 
efficiency. Green nanoscale technology presents an 
incredible opportunity to avoid negative consequences 
before they arise 3,4 and thus, they are considered to be as 
bioengineering, nanofabrication, nanobiotechnology, 
optical engineering and medicines. 

Additionally, Eco-friendly chemistry and Eco-engineering 
are combined to develop clean nano scale technology. 
Green chemistry and green engineering are thus important 
considerations for the main interest in green 
nanotechnology 5 and Table 1 and Table 2 depicts the 
principles involved in it. 

Table 1: Principle of Eco-Conscious Chemistry5 

Sr. 
No 

Principle 

1 Prevention: It is better to prevent waste than to 
treat or clean up waste after it has been created. 

2 Atom economy: Synthetic methods should be 
designed to maximize the incorporation of all 
materials used in the process into the final product 

3 Less hazardous chemical syntheses: Wherever 
practicable, synthetic methods should be 
designed to use and generate substances that 
possess little or no toxicity to human health and 
the environment. 

4 Designing safer chemicals: Chemical products 
should be designed to affect their desired function 
while minimizing their toxicity. 

5 Safer solvents and auxiliaries: The use of auxiliary 
substances (e.g., solvents, separation agents, and 
others) should be made unnecessary wherever 
possible and innocuous when used. 

6 Design for energy efficiency: Energy requirements 
of chemical processes should be recognized for 
their environmental and economic impacts and 
should be minimized. If possible, synthetic 
methods should be conducted at ambient 
temperature and pressure. 

7 Use of renewable feedstock’s: A raw material or 
feedstock should be renewable rather than 

A 
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depleting whenever technically and economically 
practicable. 

8 Reduce derivatives: Unnecessary derivatization 
(use of blocking groups, protection/deprotection, 
temporary modification of physical/chemical 
processes) should be minimized or avoided if 
possible because such steps require additional 
reagents and can generate waste. 

9 Catalysis: Catalytic reagents (as selective as 
possible) are superior to stoichiometric reagents. 

10 Design for degradation: Chemical products should 
be designed so that at the end of their function 
they break down into innocuous degradation 
products and do not persist in the environment. 

11 Real-time analysis for pollution prevention: 
Analytical methodologies need to be further 
developed to allow for real-time, in-process 
monitoring and control prior to the formation of 
hazardous substances. 

12 Inherently safer chemistry for accident 
prevention: Substances and the form of a 
substance used in a chemical process should be 
chosen to minimize the potential for chemical 
accidents, including releases, explosions, and fires 

Table 2: Principle of Eco-Conscious Chemistry Engineering6 

Sr. 
No 

Principle of Green Technology 

1 Engineer processes and products holistically, use 
systems analysis, and integrate environmental 
impact assessment tools 

2 Conserve and improve natural ecosystems while 
protecting human health and well-being 

3 Use life-cycle thinking in all engineering activities 

4 Ensure that all material and energy inputs and 
outputs are as inherently safe and benign as 
possible 

5 Minimize depletion of natural resources. 

6 Strive to prevent waste 

7 Develop and apply engineering solutions, while 
being cognizant of local geography, aspirations, 
and cultures. 

8 Create engineering solutions beyond current or 
dominant technologies; improve, innovate, and 
invent (technologies) to achieve sustainability 

9 Actively engage communities and stakeholders in 
the development of engineering solutions 

2. Green nanoparticles for Drug Delivery 

2.1 Nanoparticles in Drug Delivery 

These are the agents with a size range in between 1-100µm 
and possess specific characteristics such as enhanced 
stability, robustness, affordability, biocompatibility, 

specific targeting, etc. The primary cause of the significant 
differences in their physiochemical properties of the 
nanoparticles (NPs) is along with minute dimensions and 
elevated ratio in surface-to-volume ratio 6,7. The Eco-
Conscious Chemical Principles are taken into consideration 
while developing nanoparticles in an environmentally 
friendly manner 6.   The green synthesis uses simple, 
affordable, environmentally safe, and easily accessible raw 
materials; the process involves fewer steps and no 
hazardous chemicals or noxious by-products formed 8. 

a) Liposome 

The very first drug delivery system that was studied was 
liposomes. They are colloidal or nano, micro-particular 
carriers, typically ranging in size from 80 to 300 nm 9 these 
discrete particles comprised of bilayers along with other 
surfactants, and phospholipids and steroids (like 
cholesterol). They develop spontaneously when certain 
lipids diffuse in aqueous environments, and this is how 
liposomes are generated, especially by sonication 10. 

Function: - 

• It has been found that liposomes enhance the drug's 
solubility. 

• Enhance their pharmacokinetic attributes, including 
the chemotherapeutic agent's therapeutic index, 
rapid metabolism and reduction in undesirable side 
effects with an increase in anti-cancer efficacy both 
in vitro and in vivo 11. 

• Increases the residence time and duration of the 
action of such particles as their number decreases. 

• Liposomes cell induce lipid transfer, adsorption, 
fusion and endocytosis. Numerous 
examples including antitumor drugs 11, Neuro-
signaling Molecules (5-HT (5-hydroxytryptamine)) 12, 
Antimicrobial Drugs 13,14, Inflammatory Suppressants 
15, and Disease-Modifying Antirheumatic Drugs 16, is 
found in liposomal formulations. 

b) Nanoparticles based on solid lipids 

Solid lipids form a scaffold at body temperature and is the 
basis for several types of carrier systems, including Lipid-
based Nanoparticles, Enhanced Lipid Nanoparticles, Lipid-
bound Drug Complexes 17. For cutaneous 18, peroral 19, 

parenteral 20, ocular 21, pulmonary 22, and rectal 23 
administration, they have been used. 

Particles composed of crystalline lipids, such as 
Fractionated triglycerides, Multifunctional glycerides or 
surface-active agents, are known as solid lipid 
nanoparticles 24.  

The following are the primary characteristics of solid lipid 
nanoparticles:  

• Good physical stability and protecting incorporated 
drugs against deteriorating 

• Regulated release of drugs 
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• High tolerance 25,26. 

c) Polymeric nanoparticles (PNP) 

Structures having a diameter ranging from 10 to 100 nm 
are known as polymeric nanoparticles. The primary source 
of them is synthetic polymers such as: - 

• Poly- -poly-caprolactone 27 

• Polyacrylamide 28 

• Polyacrylate 29 

When obtained as Natural polymers, e.g., albumin 30, DNA, 
chitosan 31, 32 gelatin 33 PNPs can be categorized into 
biodegradable types, such as poly(L-lactide) (PLA) 34, and 
polyglycolide (PGA)) 35 and non-biodegradable types, such 
as polyurethane) 36. During the polymerization stage, drugs 
can wrap themselves on the PNP structure 37 or become 
immobilized on the PNP surface following a polymerization 
reaction 38. In addition, drugs may be delivered into the 
target tissue by desorption, diffusion, or erosion of 
nanoparticles 39. 

d) Dendrimer nanocarriers 

These are the special polymers with distinct size and 
structures called dendrimers. Among all the biological 
systems dendritic design is believed to have a familiar 
design. Examples of construction of dendritic nanometric 
molecule possess proteoglycans, glycogen, and 
amylopectin 40. While the symmetrical dendrimer has a 
distinct architecture opposed to that of a linear polymer 
and thus respective elements were illustrated as- 

• Kernel 

• Dendron’s (repeated units that create a highly 
branched, three-dimensional architecture. 

• surfactants, molecules. 

Atom or a molecule are tending to interact with Dendron 
and thus they are termed as core assuming that it 
possesses two similar functional groups. The monomer 
molecules known as dendrons, or dendrimer arms, are 
connected to the core and form layers, building 
subsequent generations (albeit their growth is restricted in 
space). Dendrimer physicochemical properties along with 
confirmation of biocompatibility with surface functional 
group 41. Dendrimers like Poly (amido amide) (PAMAM) are 
widely utilized in biological applications. The arrangement 
of Polyamidoamine dendrimers and the binding of active 
drugs 42 or chromosomal part 43 into these molecules. For 
example: Cisplatin is the drug immobilized in PAMAM 
dendrimer. When compared to free cisplatin, this complex 
has a number of benefits, including the emission of a drug 
at lower rate with the piling of greater amount of drug in 
solid tumors, and less toxicity across the board 44,45. 

e) Silica Materials 

The two types of silica materials employed in controlled 
drug delivery systems are mesoporous silica nanoparticles 

and xerogels 46. Silicates crystals are very prominent as 
inorganic that tend to be chosen for biological applications 
47. Silica xerogels have a large surface area, high porosity, 
and an amorphous structure. Synthesis parameters 
determine the form and size of a porous structure 48. The 
technique of sol-gel is widely applied in the production of 
drug-loaded silica gels. The characteristics of xerogels 
employed in controlled drug release may be altered by 
modulating the catalyst concentration, temperature, 
reagent ratio, and drying pressure throughout the 
synthesis process 49, 50. Phenytoin 51, doxorubicin 52, 
cisplatin 53, and metronidazole 54 and so they are few 
instances of drugs that have been placed into xerogels by 
this method. Mesoporous silica nanomaterials come in 
two most popular forms: SBA-15, which has a well-
ordered, linked system of pores in the shape of a hexagon, 
and MCM-41, which has a hexagonal arrangement of 
mesopores 55. Chemical or physical adsorption is the 
method by which drugs are loaded into mesoporous silica 
material 56. During these procedures, an array of drugs, 
such as drugs for cancer treatment57, 58 and active 
molecules for the irregular rhythmicity of heart 59, were 
incorporated into MNSs and the emissivity of active 
molecule can be controlled by diffusion. 

f) Carbon nanomaterials 

Drug delivery techniques use nanotubes and nanohorns, 
two different forms of carbon nanocarriers. The distinctive 
architecture of carbon nanotubes is formed by rolling 
graphite layers into unilayer carbon nanotubes or multi-
layer carbon nanotubes with elevated surface area that 
possess conductivity with electrical and thermal property 
60 chemically altering the superficial layer of nanotubes can 
increase their biocompatibility 61. Covalent linkage of 
PAMAM dendrimers 62, amphiphilic di block copolymers 63, 
or PEG layers 64 on the surface of CNTs or their dispersion 
inside a hyaluronic acid matrix 65 can all be used to carry 
out this adaptation. Due to their mechanical because of 
their mechanical, SWCNTs have been utilized for the 
betterment of the qualities of other carriers like polymeric 
or non-polymeric composites 66. 

There are three approaches to immobilize medicines in 
carbon Nano carriers: 

• Active drug molecule incorporated drug in a carbon 
nanotube 67. 

• Surface adsorption (via hydrogen bonding, 
hydrophobic, electrostatic, and other interactions) 
on the surface or in the gaps between the 
nanotubes68,69. 

Coupling of functionalized carbon nanotubes (f-CNTs) with 
active substances. Compared to the other two approaches, 
encapsulation offers the benefit of shielding the drug from 
degradation during cell transit and releasing it under 
particular conditions 70. Chemical or electrical control can 
be used to regulate the release of drugs from carbon 
nanotubes. To prevent unexpected medicine release, the 
open ends of carbon nanotubes (CNTs) were sealed with 
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polypyrrole sheets 71. The selectivity of drug delivery 
systems was further enhanced by the addition of binding 
agents, such as folic acid and epidermal growth factor 72, 73. 
The only single-wall nanotubes known to exist, called Nano 
horns, have characteristics with nanotubes 74. They are 
very pure and conveniently made at a very low cost since 
their creation procedure does not require a metal catalyst. 

g) Magnetic nanoparticles (MNPs) 

Multiple characteristics of magnetic nanomaterial extends 
them to very high selectivity. These include, in particular 
being simple to manage with the help of an external 
magnetic field; being able to visualize (drug delivery 
strategies can be passive or active); and having improved 
target tissue absorption leading to Effective therapy at 
doses that are therapeutically ideal 75. 

However, difficulties in achieving these objectives appear 
in the majority of situations involving the employment of 
magnetic nanocarriers. It is most likely related to an 
inadequate magnetic system or improper magnetic 
nanoparticle attributes. 

MNPs may be classified as pure metals (cobalt 76, nickel 77, 
manganese 78, ferrous 79, alloys, and magnetic oxides 
based on their spin orientation properties. However, the 
selection of magnetic material is extremely restricted 
when restricting the applications of MNPs to biomedicine 
exclusively. The reason for this restriction is ignorance of 
the harmful impact that most of these nanomaterials have 
on human health. Because of their advantageous 
characteristics, iron oxide nanoparticles are the only kind 
of MNPs that the FDA has approved for clinical usage. A 
single step can be easily synthesized utilizing an alkaline 
co-precipitation method between Fe2+ and Fe3+, and the 
chemical stability of the product under physiological 
conditions can be altered by coating it with different 
substances 80.  Different shells, such as golden 81, polymeric 
82, and silane 83. Furthermore, the human liver, spleen, and 
heart all naturally contain iron oxides, notably magnetite 
and maghemite 84, indicating their biocompatibility and 
lack of toxicity at physiological concentrations. 

Determining a safe maximum level of MNPs for use in 
biomedicine is essential 85. 

2.2 Method of Green Nanoparticle Synthesis. 

Research in these relatively fresh and largely uncharted 
territories has been sparked by the biosynthesis of 
nanomaterials86. At the nano- and micro-length scales, 
nature has evolved a number of methods for the synthesis 
of inorganic materials87. Bio-organism synthesis is 
compatible with notions of green chemistry. As "green 
synthesis" of nanoparticles uses safe, non-toxic, and 
environmentally acceptable chemicals, several eco-
friendly procedures are used to synthesize nanoparticles88.  

These strategies include: 

• Plant-derived nanoparticle 

• Microbial-derived nanoparticle 

2.2.1 Plant-derived Nanoparticles 

Metallic nanoparticles induce their effect in various forms 
and sizes for use in biological systems, various plant 
components, organic and inorganic are utilized. Changes in 
the quantity of plant extract in the reaction medium and 
the use of a variety of metal concentrations can modify 
biosynthesis processes, changing the shape and size of NP 
89. Ex: Green tea (zeta potential: 26.52 mV at pH 7) can be 
used to perform the infusion-dialysis method for 
separating tea NPs (spherical, 100–300 nm). Furthermore, 
they found that spherical tea NPs could serve as 
multipurpose carriers for cancer treatment in vitro 90. 

Preparation of Tea Nanoparticles (TNPs) 

Applications of plant-derived nanoparticles 

When it comes to producing useful nanoparticles and 
nanostructures with nontoxic and biocompatible qualities, 
plants can serve as a renewable, diverse, and sustainable 
source along with a platform. Thus, the application of 
plants in Nano biotechnology, sometimes referred to as 
"green nanotechnology," continues to grow swiftly.  

Table 3: Applications of plant-derived nanoparticles 

Plant derived Nano particles Application 

      Protein-based • Controlled drug and gene delivery 

• Bioactive compound delivery 

• Tissue engineering 

• Food industry 

• Improvement of oral bioavailability of drugs 

• Drug-loaded carriers for medical applications (e.g., gliadin) 

Polysaccharide-based  Drug delivery systems based on nitrocellulose, Drug excipients, Blood vessel 
replacement, Soft-tissue-ligament, meniscus, and cartilage replacements, Nucleus 
pulposus replacement Tissue repair, regeneration, and healing 

Adhesive based Tissue engineering and biomedical applications, Platelet aggregation leading to clotting 
and the sealing of wounds, Cosmetics 

Lipid-based  Generation of soft nanomaterials, such as nanotubes, nanofibers, gels, and surfactants, 
Biomedical applications 
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Numerous fields, including photonics, medication and gene 
delivery, solar cell devices, biomedicine, biosensors, 
electronics, sensing, environmental remediation, bio 
imaging, and biomaterials, have made use of plant-issued 
nanostructures and so due to this reason Table 3 depicts 
the applications associated with the involvement of plant-
derived nanoparticle 91.                        

2.2.2 Microbial-derived nanoparticle 

Upon multiple studies it has been detected that siliceous 
agents were synthesizes via diatoms 92, gypsum and calcium 
layers and thus they are generated by S-layer bacteria 93, 
and magnetite particles are synthesized by magneto tactic 
bacteria 94, 95. Microbes are thought to be powerful, 
environmentally friendly green nano factories that 
synthesize nanoparticles. Studies on the A potential field of 
research in nanobiotechnology that bridges the gap across 
biotechnology and nanotechnology is the microbial 
production of nanoparticles. Interactions between metals 
and bacteria have been used in a variety of biological 
applications in the fields of bioremediation, bio 
mineralization, bioleaching, and bio corrosion 96. 

I. Biosynthesis of nanoparticles by bacteria 

Microbes synthesize nanoscale inorganic chemicals within 
and outside their cells. The primary cause of microbial 
resistance to heavy metals lies in energy-dependent ion 
pumping by membrane proteins functioning as ATPase, 
chemiosmotic cation transporters, or proton anti-
transporters along with chemical detoxification 
mechanisms. Microbial resistance as well is influenced by 
differences in solubility 97,98. Thus, microbial systems can 
reverse the toxicity of the metal ions by transiting soluble 
harmful inorganic ions to insoluble non-toxic metal 
nanoaggregates. Microbial purification can be executed by 
two different techniques: extracellular bio mineralization, 
bio sorption, complexation, or precipitation, and 
intracellular bioaccumulation. Metal nanoparticles yield 
extracellularly possess multiple marketed claims around 
plentiful zones. Since polydispersity is the foremost root of 
priority, it is very important to upgrade the state for 
monodispersity in a biological procedure 99. Particles that 
accumulate within the cell have a specific size and 
decreased polydispersity. 

a) Intracellular synthesis of nanoparticles by bacteria 

Supplementary pace seeks to emit the intracellularly 
prorogated nanoparticles tend to incorporate ultrasonic 
analysis or in contact with appropriate detergents. This 
might be applied to mining wastes and metal leachates to 
recover precious metals. Furthermore, a variety of chemical 
processes may employ bio-matrixed metal nanoparticles as 
catalysts 100. By doing this, the nanoparticles will be better 
preserved for ongoing use in bioreactors. 

The deposition of mineral ores has been associated with 
bacterial activity for several years: - 

• According to recent reports, gold may be accumulated 
by pedomicrobium-like budding bacteria during the 

iron and manganese oxide deposition stage of the 
Alaskan placer 101. 

• Water-soluble Bacillus subtilis 168 altered Au+3 ions 
inside the cell walls to Au+1, creating an octahedral 
structure that measured 5–25 nm 102-103. 

• Gold mine-enriched heterotrophic sulfate-reducing 
bacteria (SRB) destabilized the gold(I)-thiosulfate 
complex Au(S2O3) to elemental gold in the bacterial 
membrane, releasing H2S as a final byproduct of 
metabolism 104. Within the periplasm of the Fe (III) 
reducing bacterium Geobacter ferrireducens, gold was 
precipitated intracellularly 105. Under anaerobic 
circumstances and with hydrogen gas present, 
Shewanella algae reduced Au+3 ions at 25 °C with 10–
20 nm in the periplasmic space (pH 7.0) and with 15–
200 nm on the surfaces of mesophilic bacterial resting 
cells that reduced iron (III). (pH 2.8) 106 . 

• The photosynthetic bacteria Rhodobacter capsulatus 
was also demonstrated to possess the ability to reduce 
trivalent aurum, demonstrating 92.43 mg [Hg(AuCl4)/ g 
dry weight as the biosorption capacity during the 
logarithmic development phase. Carotenoids and 
NADPH-dependent enzymes released extracellularly 
and/or incorporated in the membrane were shown to 
enhance the biosorption and bioreduction of Au+3 to 
Au+2 in extracellular and plasma membranes 107. 

b) Extracellular synthesis of nanoparticles by bacteria 

The microbial synthesis of metal nanoparticles relies upon 
the position of the declining agents within the cell. When 
soluble secretory enzymes or cell wall reductive enzymes 
are engaged in the declining technique of metal ions, metal 
nanoparticles are determined extracellularly. Extracellular 
yield of nanoparticles has an expensive range of solicitation 
in optoelectronics, electronics, bioimaging, and sensor 
technologies than intracellular aggregation does. At room 
temperature, it was discovered that RhodoPseudomonas 
encapsulates a prokaryotic bacterium that reduces Au+3 to 
Au0 108. According to the TEM examination, at pH 7.0, the 
greater part of the particles was spherical and lie in-
between 10 and 20 nm in size. However, the pH of the 
solution changed, different forms and sizes emerged. 
Together with spherical nanoparticles, triangular 
nanoparticles also materialized at pH 4.0. These 
nanoparticles were spherical and possess a diameter in-
between 10 and 50 nm, and triangular size range in 
between 50 and 400 nm. There was also a study on the 
elevation of state for the synthesis of anisotropic gold 
nanostructures with altering gold ion concentrations 109 
here; a reduced concentration of gold ions was merged to a 
cell-free constituents of R. capsulata to create specific Au 
nanoparticle having diameter 10 – 20nm. However, more 
gold ions were used in the synthesis of densely networked 
structures of 50–60 nm gold nanowires. The bio reduction 
and capping of the gold nanoparticles were shown to be 
facilitated by one or more proteins, with sizes ranging from 
14 to 98 kDa, according to analysis performed using sodium 
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dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-
PAGE). 

II. Virus-mediated biosynthesis of nanoparticles 

Amino acids, polyphates, and fatty acids are examples of 
biological molecules that are utilized as templates in the 
formation of semiconductor nanocrystals. Specifically, the 
morphologies of semiconductors nanocrystals derived by 
altering the composition and concentration of various fatty 
acids (chain lengths) 110,111. There are further biological 
techniques that can be used to synthesize inorganic 
compounds in an environmentally responsible manner. 
Inorganic nanoparticle and microstructure synthesis via 
template-mediated methods has been achieved by the use 
of biological genetic material 112-114, peptides cages 115, lipid 
cylinders 116-117, viroin capsid capsules 118, bacterial 
exosomes 119, Smooth capsid layers 120, and multicellular 
superstructures 121. 

Interestingly, the oxidative hydrolysis, sol-gel condensation, 
and co-crystallization of CdS and PbS processes that yield 
iron oxides were all modeled after the tobacco mosaic virus 
(TMV). It was made possible by external glutamate and 
aspartate functionalities present on the virus outer 
surface122. Self-assembled synthesizes their assembly, were 
used as biological templates to manufacture quantum dot 
nanowires. The crystalline capsid of the virus, M13 
bacteriophages, produced peptides such as A7 and J140, 
which are capable of nucleating Cd-S and Zn-S. After being 
chosen via a pIII phage display, these ordered template 
peptides (A7/J140-pVIIIM13) were exposed to 
semiconductor precursor solutions. It was discovered that 
Cadmium-S entangled as nanowires of 3-5 nm or Zinc-S 
nanocrystals of hexagonal wurtzite, measuring around 5 
nm, were constructed on the viral capsid. Using bi 
functional peptide virus A7 and J140 within the same viral 
capsid were synthesized, hybrid nanowires (ZnS–CdS) were 
produced. 

2.3. Green Chemistry Principles 

“The idea of "green chemistry" refers to "the architecture 
of chemical agents and the technique to obstruct or exclude 
the practice and design of precarious agents.” 123,124 The aim 
of the Green Chemistry technique is to achieve molecular 
sustainability through the integration of the design idea. 
Design is not an accident; rather, it is a reflection of human 
intention. It is composed of creativity, strategy, and precise 
conception. The purpose of the "design rules" called the 
purpose of exclusive authenticate guidelines of eco 
chemistry is to assist scientists intentionally work toward 
sustainability. "Green chemistry" is the technique of 
accurate plotting molecular methods and chemical 
synthesis to prevent negative effects 125. 

 

Framework of Green Chemistry 

The listed consideration of Green Chemistry is marked as: 

• Plans executing Green Chemistry encircle development 
of the chemical life cycle. 

• Green chemistry mainly eyes to decline innate hazards 
by devising chemical products and processes with 
reduced innate risk. 

• Green Chemistry mainly exercise its responsibilities as 
a merged set of guidelines or standards for the plan 

The supreme aim of green chemistry is to decline risk at 
every pace of the life cycle, which is also financially 
beneficial. Anything that poses a risk to people or the 
environment is considered a hazard. It is possible to prevent 
the inherent hazards associated with each stage of a 
chemical process, such as toxicity and physical risks like 
flammability and explosions, as well as global concerns like 
stratospheric ozone depletion. Depending on these risks, 
the type of starting material and primal matter used in 
chemical transitions along with the finished products 
synthesized, may provide dangers. When the Twelve 
Principles are combined into a single, cohesive framework, 
intrinsic hazards in chemicals and processes are reduced or 
eliminated. 

Risk=f (hazard x exposure) 

Where Risk determine hazard and exposure 

The Twelve Principles 

John Warner and Paul Anastas presented the Twelve 
Principles of Green Chemistry in 1998. They are included in 
Table 1 because they provide a foundation for creating 
novel chemical products and procedures. Every aspect of 
the process life-cycle is covered by this framework, 
including the raw materials utilization, the efficacy and the 
preventive transition, and the pathogenicity and 
biodegradability of the finished products and reagents. 

2.4. Characterization techniques 

Various characterization difficulties with the nanoparticles 
impact the thorough and suitable characterization of the 
nanoparticles. Therefore, it is crucial to comprehend the 
issues encountered while characterizing nanoparticles and 
to choose an appropriate characterization method. In 
particular, the characterization of nanoparticles is done to 
evaluate the properties of the nanocomposite materials, 
including shape, size, crystallinity, fractal dimensions, 
orientation, zeta potential, wettability, solubility, particle 
size distribution, aggregation, hydrated surface analysis, 
and the intercalation and dispersion of nanoparticles and 
nanotubes, dictate their functionality. Along with the 
determination of many other techniques and so they are 
marked in Table 4. 
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Table 4: Characterization method for nanoparticles 

Type Technique Specific purpose Reference 

Formation of 
nanoparticle 

UV spectrophotometry Provides insights about the aggregation, stability, size, and 
structure of nanoparticles. 

126,127 

Morphology and 
particle size 

Transmission electron 
microscopy 

High-resolution transmission 
electron microscopy 

 

Scanning electron 
microscopy 

Atomic force microscopy 

Dynamic Light Scattering 

Determine the nanoparticles' morphology, size (10-10 m), 
shape, and allographic structure. 

Determine the atomic arrangement and local microstructures 
of crystalline nanoparticles, including the surface atomic 
arrangement, glide plane, lattice vacancies and defects, screw 
axis, and lattice fringe. 

Evaluate the morphology directly by visual. 

Determine the dimensions (height, breadth, and length) as well 
as other physical characteristics (surface texture and 
morphology). 

Determine the distribution of particle size. 

128,129 

 

130,131 

 

132-134 

 

128,135 

 

135,133,136 

Surface charge Zeta potential 

 

 

Fourier transform infrared 
spectroscopy 

 

X-ray photoelectron 
spectroscopy 

 

 

 

Thermal gravitometric 
analysis 

Determine the characteristics of colloidal nanoparticles' 
stability and surface charge as well as the composition of the 
components that are coated on or encapsulated inside the 
particles. 

Evaluate the nanoparticles' functional groups to determine if a 
solid, liquid, or gas is emitting, absorbing, photoconductive, or 
scattering Raman light. 

Determine the structure and the speciation process of the 
various elements contained in the magnetic nanoparticles' 
chemical composition, as well as the mechanism of the 
reaction that takes place on their surface and the 
characteristics involved in the bonding of the various elements. 

Evaluate the formation of coatings, such as polymers or 
surfactants, to assess the effectiveness of binding to the 
surface of magnetic nanoparticles. 

137 

 

 

138,139,133 

 

 

139 

 

 

 

 

139 

Crystallinity X-ray diffraction Determine and measure various crystalline shapes or 
elemental composition of the nanoparticles. 

135,127,141 

Magnetic 
properties 

Vibrating sample 
magnetometry 

Superconducting quantum 
interference device 
magnetometry 

Assess magnetic nanoparticles' degree of magnetization. 

Figure out the magnetic characteristics of the magnetic 
nanoparticles. 

139 

 

139 

Other techniques 
used in 
nanotechnology 

Chromatography and 
related techniques 

Energy-dispersive X-ray 
spectra 

Field flow floatation 

Filtration and centrifugation 
technique 

Hyperspectral imaging 

Laser-induced breakdown 
detection 

Mass spectrometry 

 

 

Small and X-ray scattering 

 

X-ray fluorescence 
spectroscopy 

Arrange the nanoparticles according to how appropriate they 
are for the mobile phase. 

Evaluate the nanoparticles' elemental composition. 

Use magnetic susceptibility to distinguish between various 
nanoparticles. 

Separate the nanoparticles' preparatory size into fractions. 

Evaluate the various types of nanoparticles to examine their 
interactions and changes in water samples, and describe the 
functional groups and unique surface chemistry of the 
nanomaterial. 

Examine the concentration and dimensions of the colloids. 

Examine nanoparticles with fluorescent labels. 

Examine solid and liquid materials' structural characterization 
in the nanoscale range. 

Determine what elements are present in the samples whether 
they're liquid, powdered, or solid, and at what concentrations. 

141,142 

143,144 

 

145 

 

146-148 

 

149 

 

150,151 

 

152,153 

 

 

141,142 
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2.5.  Applications in Targeted Drug Delivery 

The successful development of drug delivery systems based on organic, inorganic, and hybrid nanoparticles as drug carriers 
for active targeting, especially in chemotherapy and so there are a wide range of applications associated with it and thus 
they are marked in Table 5. 

Table 5: Application of Green nanoparticles 

Application Material Purpose 

Cancer therapy Poly (alkyl cyanoacrylate) nanoparticles with anti-
cancer agents, oligonucleotides 

Targeting, reducing toxicity, enhanced 
uptake of anti-tumour agents, improved 
invitro and in vivo stability 

Intracellular 
targeting 

Poly (alkyl cyanoacrylate) polyester nanoparticles 
with anti-parasitic or anti-viral agents 

Target reticuloendothelial intercellular 
infections 

Prolonged systemic 
circulation 

Poly esters with adsorbed polyethene glycols or 
pluronic 

Prolonged systemic drug effect, avoid 
uptake by the reticuloendothelial system 

Vaccine adjuvant Poly (methyl methacrylate) nanoparticles with 
vaccines (oral and IM immunization) 

Enhanced immune response alternate 
acceptable adjuvant 

Per oral absorption Poly (methyl methacrylate) nanoparticles with 
proteins and therapeutic agents 

Enhanced bioavailability protection from 
GIT enzymes 

Ocular delivery Poly (methyl methacrylate) nanoparticles with 
steroids, anti-inflammatory agents, anti-bacterial 
agents for glaucoma 

Improved retention of drug/ reduced 
washout 

Oligonucleotide 
delivery 

Alginate nanoparticles, poly (D,L –lactic acid) 
nanoparticles 

Enhanced delivery of oligonucleotides 

DNA delivery DNA- gelatin nanoparticles, DNA- chitosan 
nanoparticles 

Enhanced delivery and significantly 
higher expression levels 

Other applications Poly (alkyl cyanoacrylate) nanoparticles with 
peptides Poly(alkyl cyanoacrylate) nanoparticles, 
nanoparticles with adsorbed enzymes, nanoparticles 
with radioactive or contrast, copolymerized peptide 
nanoparticles of activated peptides 

Crosses blood-brain barrier, 
immunoassays, improved absorption and 
permeation for transdermal applications, 
enzyme immunoassays, radio imaging 
agents, oral delivery of peptides 

  

3.Bio-inspired Nanomaterials in cancer therapy 

3.1 Biomimicry in Nanotechnology 

Biomimicry is the technique of developing new 
technologies with the required functionality by mimicking 
the characteristics, structures, and patterns seen in nature. 
Furthermore, the term was initially used in the 1950s by 
American biophysicist Otto Schimt 155,156. 

This is a relatively young multidisciplinary topic that finds 
applications at almost all engineering scales, ranging from 
microscopic to enormous. The idea of mimicking nature is 
used in many fields of study and engineering to solve 
difficult problems. Still, engineered biomimicry 
encompasses three methodologies: 

• Bio inspiration: Use of an idea from nature without 
changing its composition or method. 

• Biomimetic: Replicating the real process to attain 
certain functionality 157. 

• Bio replication: Direct replication of a biological 
structure to achieve a certain functionality 158. 

Researchers may utilize nanotechnology to investigate 
objects at the nanoscale, whereas biomimicry allows 
researchers to address issues using natural solutions. 
Working with matter at the nanoscale (10−9 mm) level is 
known as nanotechnology.  Undoubtedly one of the most 
fascinating scientific breakthroughs of the 21st century, it 
has allowed for the creation of several amazing innovations, 
such as Nano sensors and Nano robots. Biomimicry and 
nanotechnology are closely connected subjects. Because all 
biological systems consist of units only visible at the 
nanoscale, biology is a source of inspiration for the creation 
of new instruments and systems that enhance the 
capabilities of technology already in use. Thus, the 
integration of nanotechnology with biomimicry is essential 
for the progress of science and technology 113. Furthermore, 
biomimicry combined with nanotechnology is crucial for 
MEMS (microelectromechanical systems) and NEMS 
(nanoelectromechanical systems). Biomimetic NEMS are 
widely used in medicine 159. 

Poly (lactic-co-glycolic acid) (PLGA) nanoparticles covered 
with cell membranes are an example of novel functional 
biomimetic nanoparticles have been created using natural 
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biological macromolecules as ingredients 160 and thus it is 
depicted in Figure 1, they are made from platelet 
membranes, nucleated cells such as neutrophils and 
macrophages, and cancer cells. 

3.2. Methods of preparation 

A biomimetic membrane that has been coated with a 
material or a biomimetic membrane that acts as a drug 
delivery vehicle combines to form biomimetic 
nanoparticles. Table 6 represents an overview and a 
pertinent example of the many methods by which 
biomimetic nanoparticles might be produced. Table 6: 
Synthetic approaches for Green biomimetic nanoparticles 
for cancer therapy.  

Figure 1: Biomimetic nanoparticles are made using a variety 
of naturally occurring biological macromolecules 

 

Table 6: Synthetic approaches for Green biomimetic nanoparticles for cancer therapy. 

Method of 
preparation 

Cell membrane 
coating 

Core material Application Reference 

Sonication Erythrocyte 

Cancer Cell 

Stem Cell 

PLGA 

PLGA 

Fe3O4 

Treatment of solid tumors. 

Treatment of hepatocellular 
carcinoma. 

Magnetic hyperthermia-mediated cell 
death. 

161 

162 

163 

Microfluidic 
sonication 

Exosome PLGA 

 

Targeted therapy of homologous 
tumours by evasion of 

immune system. 

164 

Extrusion Erythrocyte 

Cancer cell-
extracellular 

vesicles 

Erythrocyte Albumin 

Macrophage 

Ag2S Quantum Dot 

Gold 

Albumin 

Liposome 

Sonodynamic therapy of tumours 
guided by fluorescence imaging. 

Anti-cancer drug delivery Controlled 
release of ATP in cancer therapy. 

Targeted anti-cancer therapy. 

Targeted anti-cancer therapy 

165 

 

166 

167 

168 

Sonication & 
extrusion 

Platelet Chitosan 
oligosaccharide-
PLGA copolymer 

Targeted anti-cancer therapy. 169 

Microfluidic 
electroporation 

Erythrocyte Fe3O4 Magnetic resonance imaging & 
photothermal therapy. 

170 

 

Role of Biomimetic in Cancer Cell Membrane Coating 

One of the most well-known biomimetic strategies for 
oncological applications is the coating of cancer cells and 
they are used to produce immortal cancer cells. 
Consequently, the immune-evading characteristics and 
extended blood circulation durations of cancer cell 
membrane coatings in biomimetic nanotechnologies and so 
they believed to be as a great option for the delivery of 
drugs. However, homotypic targeting—a feature of cancer 
cell membrane coatings allows these structures to connect 
to and detect the parent cancer cells by molecular means 
171,172. The only restriction is that the matching biomimetic 
structure can only attack tumors that originated from a 

particular kind of cancer cell 173. Otherwise, any cancer cell 
type may be utilized to effectively produce cancer cell 
membranes. Homotypic targeting is made attainable by the 
molecules that bind cells to cells on the surface of cancer 
cells 172 and thus the ability of these biomimetic 
constructions developed from cancer cells to identify and 
bind to both primary and metastatic tumors is primarily 
linked to the general process of homotypic targeting. and 
thus, it is depicted in Figure 2. 

On the other hand, uncoated nanoparticles that have been 
encapsulated with cancer cell membranes frequently offer 
more tumor-selective accumulation, reduced accumulation 
in healthy tissue, and molecular selectivity towards cancer 
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cells 171. Cancer cell membrane coatings were used in the 
development of therapeutic medications, such as paclitaxel 
with doxorubicin to treat breast, ovarian, lung, and several 
other cancers 171,174,175. Other nanoparticles, including poly 
(lactic-co-glycolic acid) (PLGA), indocyanine green-
poly(lactic-co-glycolic acid), oxaliplatin-containing, and 
tirapazamine-containing nanoparticles, have also been 
coated with cancer cell membranes 173,172,176,177. 

 

Figure 2: Diagrammatic illustration of biomimetic 
nanoparticles coated with cancer cell membranes enabling 
homotypic targeting of 4T1 cancer cells in both primary and 
metastatic tumors 

3.3. Nature-inspired Nanomaterials 

A relatively new and still unknown area of study is the 
biosynthesis of nanomaterials. Inorganic compounds with 
sizes of Nano and microns are produced by a multitude of 
techniques that nature has evolved. During the bottom-up 
process of nanoparticle production, reduction/oxidation is 
the main reaction. It is frequently plant phytochemicals with 
reducing or antioxidant properties or microbial enzymes 
that reduce metal compounds into their equivalent 
nanoparticles. They mostly include of: 

a) Use of bacteria to synthesize nanomaterials 

In both surface and subsurface settings, bacteria are 
essential to the biogeochemical cycling of metals and the 
production of minerals 178,179. An innovative method for 
producing metal nanoparticles is the utilization of microbial 
cells to synthesize materials at the nanoscale. Although 
efforts to biosynthesize nanomaterials are relatively new, 
the interlinkage in-between microorganisms and metals 
have been validated, and the potential of microorganisms 
to elicit and/or aggregate metals which were required for 
marketed biotechnological techniques like bioleaching and 
bioremediation 180. Bacteria are used to synthesize gold, 
silver, and cadmium sulfide nanoparticles because of their 
capacity to produce inorganic materials both extracellularly 
and intracellularly. Magneto tactic bacteria, which create 
nanoparticle with magnetic property and bacteria of S-layer 
type and thus they create calcium carbonate and gypsum 
layers, are examples of bacteria that synthesize inorganic 
materials 181 . Moreover, it has also been demonstrated that 

Pseudomonas stutzeri AG 259, which was segregated from 
silver mining and thus yield silver nanoparticles 182. 

b) Use of fungi to synthesize nanoparticles 

The synthesis of MNP mediated by fungi is a relatively new 
field of study. The production of nanoparticles has been 
extensively facilitated by fungi, and for certain of them, the 
mechanistic features influencing the generation of 
nanoparticles have also been reported. Fungi can be used 
to produce nanoparticles with precisely specified 
dimensions in addition to monodispersity. Fungi have the 
potential to be a more abundant generator of nanoparticles 
than bacteria. This is because more proteins are secreted by 
fungus, and greater protein translation translates into more 
productive creation of nanoparticles 182. 

Yeast, a member of the fungal class Ascomycetes, has 
demonstrated significant promise in the generation of 
nanoparticles. The fungus V. luteoalbum has been used to 
create intracellular gold nanoparticles. Physical factors 
including pH, temperature, exposure duration, and 
metal (gold) concentration may be controlled to some 
extent to influence the production rate of the nanoparticles 
along with their size. A biological mechanism that could 
thus precisely regulate the particle form would be very 
beneficial 180. Ascomycetes, which include yeast, have 
demonstrated significant promise for the creation of 
nanoparticles. It was shown that Schizosaccharomyces 
pombe cells could make semiconductor CdS nanocrystals, 
with their production peaking in the middle of the growth 
log phase. During the initial exponential phase of yeast 
development 183, the addition of Cd exerted an effect on the 
organism's metabolism. It has been suggested that Baker's 
yeast, Saccharomyces cerevisiae, may be a viable option for 
transforming Sb2O3 nanoparticles, and the organism's 
resistance to Sb2O3 has also been evaluated. In this setting 
nanoparticles in a range of 2-10 nm of size were produced. 

c) Use of plants to synthesize nanoparticles 

One advantage of using plants to generate nanoparticles is 
to induce investigation of nanoparticles production 
required for various plants ongoing due to their well-being, 
ease of approachability, comprehensive range of 
metabolites that facilitate reduction, 2-20 nm in size Gold 
nanoparticles, along with Niobium, Cobalt, Zinc, Copper, 
and Silver nanoparticles, have been synthesized using 
various live plant species, including Medicago sativa 
(alfalfa), Helianthus annus (sunflower), and Brassica juncea 
(Indian mustard )184.Plant that have been proven to gather 
metal concentration with elevated range are called hyper 
accumulators and the above listed plants are under 
examination especially Brassica juncea which has greatest 
ability to aggregate metals with successive integration of 
nanoparticles. The main responsibility of phytochemicals in 
the plant-facilitated declination of metallic nanoparticle 
which has been marked for multiple examination in current 
time. The crucial phytochemicals which are suggested are 
terpenoids, flavones, ketones, aldehydes, amides and 
carboxylic acid and thus it deploy the need of infrared 
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spectroscopy. Flavones, organic acids, and quinones are the 
foremost water-soluble phytochemicals that yield an 
instant declination in concentration. The synthesis of silver 
nanoparticles was studied with respect to the 
phytochemicals present in Cyprus sp. (Mesophytes), 
Bryophyllum sp. (Xerophytes), and Hydrilla sp. 
(Hydrophytes). 

3.4. Application in Cancer Therapy 

Green nanotechnology offers various applications in cancer 
therapy- 

• Targeted Drug Delivery: Green nanotechnology 
enables the development of Nano carriers or 
nanoparticles that can carry anticancer drugs 
specifically to tumor sites. These Nano carriers can be 
modified to selectively bind to cancer cells, enhancing 
drug delivery while minimizing damage to healthy 
tissues. Furthermore, eco-friendly synthesis methods 
can be employed to produce these Nano carriers, 
reducing the impact on the environment. 

• Photo thermal therapy: Gold or carbon-based 
nanoparticles are examples of materials that can be 
used in photo thermal therapy. These nanoparticles 
have the ability to specifically kill cancer cells by 
absorbing light energy and converting it into heat. The 
creation of biocompatible nanoparticles and 
environmentally friendly synthesis techniques are the 
main goals of green nanotechnology in this 
therapeutic area. 

• Green nanotechnology: It can improve cancer 
imaging methods like fluorescence imaging or 
magnetic resonance imaging, which are used to image 
malignant cells or tissue. Tumor detection accuracy 
can be increased by engineering nanoparticles to 
improve contrast in imaging modalities. Furthermore, 
ecologically sustainable methods may be employed 
for the synthesis of these contrast agents. 

• Biosensors: Green nanotechnology can contribute to 
the development of biosensors that can detect cancer 
biomarkers at an early stage. Using sustainable 
nanomaterials, such as graphene or carbon 
nanotubes, these biosensors can provide rapid and 
sensitive detection of cancer-related molecules in 
body fluids, enabling early diagnosis and treatment. 

• Theranostics: Green nanotechnology enables the 
integration of diagnostics and therapy into a single 
platform called theranostics. Sustainable 
nanomaterial can be engineered to simultaneously 
deliver therapy and provide real-time monitoring of 
treatment effectiveness through imaging or sensing. 
This approach can lead to personalized cancer 
treatment and reduced environmental impact. 

 

Conclusion and future perspectives of Green 
Nanotechnology 

Continued research and investment in green 
nanotechnology for cancer therapy hold the potential for 
groundbreaking advancements. The field may see the 
synthesis of novel nanomaterials with better drug delivery 
systems, and elevated imaging methods for preliminary 
cancer determination. Utilizing green nanotechnology in 
cancer therapy offers a novel and exciting way to deal with 
the problems that come with traditional cancer therapies. 
Green nanotechnology is the use of nanotechnology 
methods and ideas combined with sustainable and eco-
friendly activities. Notwithstanding the potential, issues 
including long-term safety, repeatability, and scalability 
must be resolved. It could take additional research and 
advancement to advance green nanotechnology from 
laboratories to therapeutic uses. 

In conclusion, green nanotechnology in cancer therapy is an 
evolving field that offers a range of benefits, including 
improved safety, targeted drug delivery, and reduced 
environmental impact. Green nanotechnology appears to 
have a bright future in the battle against cancer, despite 
obstacles still being faced by researchers and 
multidisciplinary teams working together. Keeping up with 
the most recent advancements in this quickly developing 
sector is crucial. 
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