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ABSTRACT 

Bacteria have various strains some can be beneficial and some are pathogenic. The pathogenic strains of bacteria are dangerous as 
they have caused several critical and untreatable diseases and till now their pathogenesis is ever increasing. Those diseases are 
becoming incurable because of the increment of the resistant mechanism of bacteria. Traditional antibiotics are not effective against 
pathogenic strains of bacteria like MRSA, E.coli, Streptococcus pneumonia; Klebsiella sp. due to the evolution of drug resistance 
mechanisms, etc. A new strategy has been introduced which is combinatorial therapy. In this combinatorial therapy, antimicrobial 
peptides (AMP) and antibiotics are combined and applied against drug-resistant bacteria. Much research reveals that combinatorial 
therapy shows more efficacy against the pathogenic strain than the antibiotic or AMP alone. This review focuses specifically on the 
structure of AMP, how it works, and helps antibiotics to enhance their actions specifically as combinatorial therapy and its therapeutic 
output.  
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INTRODUCTION 

ntibiotics are drugs that are utilized to control 
bacterial disease. Antibiotics function either by 
killing the bacteria called bactericidal activity or by 

limiting their growth called bacteriostatic activity. Through 
these activities, antibiotics help our immune system to 
recognize foreign particles more specifically and combat 
against infection. Since their discovery Antibiotics have 
been effective against many bacterial infections. 

But nowadays, antibiotic resistance has been increasing 
very rapidly due to improper use of antibiotics like 
incompletion of the course of antibiotics, excessive use of 
antibiotics, etc. Thus, in the present day, combinatorial 
therapy is preferable and this review aims to show some 
synergism between antibiotic and AMP that is the main 
cause of effective combinatorial therapy against pathogenic 
bacteria. 

Table 1: Mechanism of action of antibiotics: 

Mode of 
action 

Targets Drug class Specific drugs example References 

Cell wall 
synthesis 
inhibition 

Penicillin-binding 
protein 

β-lactams Penicillin G, amoxicillin, and 
cephalosporin C 

1 

Peptidoglycan subunits Glycopeptides Vancomycin 2 

Inhibition of 
protein 
synthesis 

30 s subunit Aminoglycosides and 
tetracyclines 

Streptomycin, gentamicin, 
neomycin, tetracycline, and 
doxycycline 

3 

50 s subunit Macrolides, 
chloramphenicol, and 
oxazolidinones 

Erythromycin, azithromycin, 
chloramphenicol, and 
linezolid 

3 

Inhibition of 
nucleic acid 
synthesis 

RNA Rifamycin Rifampin 4 

DNA Fluoroquinolones Ciprofloxacin and ofloxacin 5 

Anti-
metabolites 

Folic acid synthesis 
enzymes 

Sulfonamides and 
trimethoprim 

Sulfamethoxazole, dapsone, 
and trimethoprim. 

6 

Disrupt 
membranes 

Lipopolysaccharides Polymyxins Polymyxin B and colistin 7 

 

A 

Review Article 
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Mechanisms of antibiotic resistance: 

Bacteria become resistant to antibiotics by different 
mechanisms. Four mechanisms of resistance have been 
identified, each of which involves alternation of a different 
microbial structure.  

1. Development of enzyme: Some microorganisms 
release some enzyme that specifically targets the 
antibiotics or modifies the structure of the drug, hence 
becoming resistant. 

      For example – Bacteria that synthesize the enzyme 
Penicillinase are resistant to the bactericidal effect of 
penicillin, as it breaks the beta-lactam ring of penicillin 
and interferes with its mechanism.8 

2. Alternation of target: An antimicrobial drug generally 
recognizes and binds to a specific receptor molecule in 
a bacterium and prevents its growth or kills it. Minor 
Structural changes in the target which result from 
mutation prevent the drug from binding to the target.9 

      For example- a change in rRNA, the target for the 
erythromycin, prevents these drugs from interfering 
with ribosome function. This mechanism allows a 
formerly inhibited reaction to occur. 

3. Alternation of an enzyme: This mechanism allows a 
formerly inhibited reaction to occur.9 

      For example- this mechanism is found among certain 
sulfonamide resistance bacteria. These organisms have 
developed an enzyme that has a very high affinity for 
para-aminobenzoic acid and a very low affinity for 
sulfonamide. Consequently, even in the presence of 
sulphonamide, the enzyme works well to allow the 
bacterial function. 

4. Alternation of metabolic pathway:  This mechanism 
bypasses a reaction inhibited by an antimicrobial agent 
that occurs in certain sulfa drug resistance in 
bacteria10. These organisms have acquired the ability 
to use readymade folic acid from the environment and 
no longer need to make it from para-aminobenzoic 
acid. 

 

Figure 1: Mechanism of bacterial resistance 

Quorum sensing in the mechanism of biofilm formation: 

Biofilm is a collection of microorganisms enclosed in a self-
produced matrix of EPS (extracellular polymeric substances) 
that typically comprises polysaccharides, proteins, lipids, 

and nucleic acids. Naturally, biofilm is the aggregation of 
bacteria. By forming Biofilm bacteria protect themselves 
against any type of drugs. Bacteria weaken the immune 
system of the host and they remain within the self-produced 
matrix and thus can inhibit the effect of antibiotics. Bacteria 
exchange different signals by producing biofilm and remain 
alive for a very long time. Biofilm forms on the surface of 
medical devices like lenses, catheters, and cardiac 
pacemakers 11. 

Extracellular polymeric substance significantly contributes 
to the development of biofilms which is augmented by 
environmental factors. The EPS matrix consists of protein, 
nucleic acid, e-DNA, and glycoprotein12. Bacteria appear to 
activate certain genes for polysaccharide synthesis only 
after a stable attachment to a substrate has occurred, 
according to molecular studies. Biofilms can develop on any 
nutrient-rich substance, but smooth surfaces are 
preferable. 

The role of biofilms in antimicrobial resistance (AMR) is 
very complex and can have a big impact on resistance. 
Bacteria growing in a biofilm can show 10 to 1,000 times 
greater antibiotic resistance compared to the same 
bacteria growing as planktonic cells (free-floating 
bacteria)13.  

In bacteria, frequent mechanisms of antibiotic 
resistance comprise point mutations, enzymes, and efflux 
pumps. Nonetheless, it is improbable that these 
mechanisms account for the resistance observed in biofilm 
organisms. Different elements collaborate within a biofilm 
to promote more resistance in bacteria against antibiotics. 

In particular, 3 mechanisms for antibiotic resistance of 
bacteria in biofilms are important: 

1. Resistance at the Biofilm Surface: The first mechanism 
involves antibiotics struggling to penetrate biofilm 
surfaces mainly the EPS matrix due to its complex 
structure, leading to faster deactivation at the surface, 
though this varies among different biofilms14. 

2. Resistance Within Biofilm Microenvironments: 
Planktonic bacteria respond to environmental 
fluctuation so rapidly. Antibiotics penetrating biofilm 
face challenging conditions, including reduced oxygen, 
accumulated waste, and pH variations, affecting their 
efficacy differently based on their structure and 
mechanism of action. 

For example, S. epidermidis forms a biofilm and 
becomes more resistant to antibiotics in an acidic 
environment15 

3. Resistance of Bacterial "Persister" Cells: Inside 
biofilms, bacteria can enter a dormant "spore-like" 
state, known as persister cells, which are highly 
antibiotic tolerant. Persister cells show temporary 
resistance and this resistance is due to their metabolic 
inactivity and dormancy. Persister cells were observed 
in P. aeruginosa, E. coli, S. aureus, C. albicans, A. 
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baumannii, and B. cereus. They revert to their original 
susceptibility once released or begin to divide again16. 

MECHANISM OF QUORUM SENSING FORMATION: 

Quorum sensing is a process by which bacteria establish 
connections between them. Different signal molecules 
mainly help bacteria to form biofilm. Three signal molecules 
Acyl homoserine lactone(AHL), Oligopeptide, and Furan 
borate di-ester are the reason for biofilm formation in 
Gram-negative and Gram-positive and both bacteria17.Small 
oligopeptide represents an autoinducing signal molecule, 
used as a signal molecule for quorum sensing in Gram-
positive bacteria. By modifying the leader autoinducing 
peptide (AIP) precursors molecules are formed. When the 
cell density increases, bacteria synthesize a large number of 
virulence factors and that’s why pathogenicity increases. 
Oligopeptides made this process as a response to regulate 
gene expression and stimulate cells17. 

When signal molecule oligopeptide is secreted to certain 
concentrations, it will bind to the receptor protein on the 
cell membrane and regulate the gene expression by 
activating or inhibiting the gene of interest. Acyl homoserine 
lactone (AHL) represents another signal molecule. 
Autoinducer 1 represents AHL, present in Gram-negative 
bacteria, and can diffuse freely into and out of bacterial 
cells. AHL is a synthetic product in the LuxR -LuxI system of 
gram-negative bacteria 17.LuxR binding protein is a 
transcriptional activator, encoded by LuxR.When acyl 
homoserine lactone becomes active then it regulates that 
transcriptional activator. LuxI encodes LuxI protein, a type 
of AHL synthetase. After binding of AHL and LuxR, 
dimerization or multimerization occurs 17.The 
multimerization product activates or inhibits the expression 
of the target gene by binding to the upstream regulatory 
region of the target gene. 

 

Figure 2: Acyl homoserine lactone acts as an Autoinducing 
agent to establish quorum sensing 

Another signal molecule represented by autoinducer 2(AI 2) 
is Furan borate diester. AI 2 differs from AI 1 in the 
phenomenon that AI 2 mediates the interspecies quorum 
sensing system that is bacteria regulate gene expression by 
receiving signals from AI 2, released by foreign bacteria17. 

Antibiotic -peptide conjugate-an emerging strategy: 

Antibiotic-peptide conjugate is a hybrid molecule that is 
made by combining antimicrobial peptide (AMP) and 
antibiotics. Antibiotic-peptide conjugate (APC) is the 

modern strategy to combat against biofilm formation. By 
combining AMP with antibiotics, antibiotics enhance the 
activity of AMP.APC sometimes helps to overcome the 
problem of antimicrobial resistance. 

The resistance mechanism of bacteria is increasing day by 
day. Bacteria develop resistance by combining various 
processes like efflux pump activation, Biofilm formation, 
and Synthesis of particular proteins that can protect the 
target site. AMP specifically targets microbial membranes 
because their membrane is made up of lipopolysaccharide 
(LPS), lipoteichoic acid, etc. but the mammalian membrane 
is made up of zwitterionic phospholipids, sphingomyelin 
and cholesterol. As AMP itself is a cationic molecule it 
always binds to the anionic molecules. Thus, AMP targets 
specifically microbial membranes18. 

AMP has various diversity it is classified into four groups 
based on their structure-Alpha helical, Beta sheet, 
Extended, and Loop peptides. Mostly all AMPs are 
amphipathic. AMPs first adopt a secondary structure when 
they come in contact with the membrane of pathogens then 
they bind to the cell membrane by electrostatic interaction 
and increase the cell permeability, finally they disrupt the 
cell membrane 18.But except these mechanisms AMP also 
inhibits the quorum sensing process by direct way or 
indirect way. 

As mentioned above AMP first formed a secondary 
structure in contact with the membrane of the cell, various 
models of AMP were observed like the toroidal pore model, 
Barrel stave model, and Carpet-like model. 

In the Toroidal pore model, AMPs are present on the surface 
of the membrane and continuously induce the membrane 
so that the membrane can pass through the pores and form 
a pore built up by those peptides18. In the Barrel stave model 
the attached peptides are assembled on the outer 
membrane and as a result are inserted into the cell 
membrane18.In the Carpet like the model, Pores are not 
formed like previous two models. Peptides are gathered in 
a parallel way to the bacterial membrane, covering the 
whole membrane like a carpet18. Then, those attached 
peptides instigate permeabilization and membrane 
disruption and lastly, micelles are formed. 

It was observed that combinatorial therapies are more 
effective rather than monotherapies. In combinatorial 
therapy two types of antimicrobial agents are used, as a 
result, Bacteria cannot become resistant rapidly against 
those agents and the first compound will decrease the 
resistance against the second compound and vice versa. In 
combinatorial therapy, the dose of the drugs is used in 
minimum quantity and it is enough effective against those 
pathogenic bacteria. 

Importance of combinatorial therapy in the development 
of advanced therapeutics in drug-resistant pathogen. 

Drug resistance among bacteria is increasing day by day. The 
conventional antibiotics are not very effective against that 
MDR pathogen. So, it was observed by various experiments 
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that some AMPs show antibiofilm activity. When those 
antibiotics are combined with some conventional 
antibiotics, they most of the time show a synergistic effect 
and this synergism shows more effective antibiofilm activity 
rather than those antibiotics alone or those AMP alone. 
Also, AMP enhances the activity of antibiotics to eradicate 
the biofilm-forming bacteria, disrupt cell membranes, 
interfere with nucleic acid synthesis, etc. 

Most of the time bacteria do not become resistant against 
combinatorial therapy because in this type of therapy the 
conjugate targets many sites of bacteria and it is very 
difficult for bacteria to develop resistance very rapidly for 
those multiple sites. Thus, at this time combinatorial 
therapy is preferable to combat biofilm-related infections. 

 

Figure 3: Mechanism of action of AMP 

 

Innovative combination of Antimicrobial peptide and 
antibiotics, showing synergism against biofilm formation: 

Ciprofloxacine-Melimine or Mel 4 conjugate: Ciprofloxacin 
is a broad-spectrum antibiotic that is mainly effective 
against both Gram-positive and Gram-negative bacteria. 
Ciprofloxacin naturally binds to DNA gyrase and 
Topoisomerase IV and causes conformational changes in 
DNA. Then DNA replication stops. But some bacteria 
including Staphylococcus aureus became resistant to this 
antibiotic. 

Melimine and Mel 4 are cationic peptides. It was observed 
that those peptides have antibiofilm activity. It was also 
examined that ciprofloxacin alone cannot prevent the 
growth of the biofilm-forming bacteria rather when it is 
combined with Melimine or Mel 4 it shows better efficacy 
against biofilm formation19. 

Caprine bactenecinChBac 3.4-Oxacillin or Ofloxacin 
conjugate: Caprine bactenecin is an AMP derived from the 
leukocyte of the domestic goat Capra hircus. This AMP is 
effective against both Gram-positive and Gram-negative 
bacteria, this is a linear AMP and it has dual activity in low 
concentration it binds to the aminoacyl site of bacterial 
ribosome and disrupts 

the protein folding process. In higher concentrations, it 
increases the permeability of the bacterial cell 
membrane20.t was observed that when this AMP ChBac 3.4 
(1-14)-NH2 combines with Oxacillin or Ofloxacin it shows 
high efficacy against biofilm formation and much more 

effective against MDR pathogens like E.coli, Staphylococcus 
aureus etc20. 

Tobramycin-IDR1018 conjugate: Tobramycin is a 
conventional antibiotic that has broad-spectrum 
antimicrobial activity. This anti-biotic mainly targets 
bacterial ribosomes and disrupts the protein formation 
process. 

IDR 1018 is a type of AMP that shows great activity against 
nosocomial infection-causing bacteria like P. 
aeruginosa, Escherichia coli, A. baumannii, K. pneumoniae, 
methicillin-resistant S. aureus, Salmonella enterica serovar 
Typhimurium, and Burkholderia cenocepacia. The 
combinatorial therapy of Tobramycin and IDR 1018 shows a 
large decrement in bacterial MIC and even in a short time 
they can destroy the biofilm21. 

Melittin-Colistin conjugate: Colistin is an antibiotic that 
inhibits bacterial growth. It has a wide range of 
antimicrobial activity. 

Melittin, an AMP shows antibiofilm activity against biofilm-
forming bacteria by disrupting their cell membrane, by 
down-regulation the gene cause for biofilm formation. 

The synergism between Melittin and colistin shows higher 
antibiofilm activity against Acinetobacter baumannii 22. The 
synergism was effective against biofilm formation by 
disrupting the integrity of bacterial cell membranes, RNA 
polymerase, DNA gyrase, etc22. 
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Table 2: Antibiotic conjugate AMPs with their mechanism of action 

 

Application of AI in the design of Antimicrobial peptide: 

Artificial Intelligence(AI)is now the solution to every 
problem. Even AI-driven AMP synthesis is happening. It was 
proved that AI-driven AMP is more effective than normal 
AMP in combinatorial therapy. 

Recently, Machine Learning (ML) algorithms have been used 
for the detection of the exact synergism mechanism 
between AMP and other antimicrobial compounds. These 
methods reduce the time most importantly and give 
accurate information37. 

By using AI AMP of our choice can be structured. We can 
design the peptide by categorizing their properties and can 
design AMP by selecting their properties like their toxicity, 
and their activity of biofilm disruption, and by this process 
Novel AMP can be achieved.  

 

Challenges and limitations: 

Many of the appealing characteristics of a novel antibiotic 
class are present in AMPs, including their wide range of 
activity, low rate of bacterial resistance, and unique mode 
of action that involves the development of cytoplasmic 
membrane pores38.  AMPs often show excellent stability 
across a broad pH and temperature range, which could be 
advantageous for larger manufacturing and formulation 
into deliverable goods. Because of their unique mechanism 
of action, AMPs are also less harmful to eukaryotic cells, 
opening a broad therapeutic window. There have also been 
reports of low concentrations of AMPs that have shown 
disruptive and inhibitory qualities that eradicate even well-
established biofilms. Additionally, AMPs neutralize 
endotoxins, work in animal models, and exhibit synergy with 
traditional antibiotics 39. Because AMPs are drawn to the 
negatively charged lipid bilayer structure of bacterial 

Conjugate  

name 

Antibiotic AMP/ 

Peptides 

Target Pathogens Mechanism References 

Vancapticins Vancomycin Polysines 
with MIE 

MRSA, Gram-
positive resistant 
strains 

Dual action, improved drug 
accumulation, and membrane 
insertion 

23 

Vancomycin-
Ahx-r8 

Vancomycin D-octaarginin 
(r8) 

MRSA, 
Enterococcus 
faecium (VRE), 
Staphylococcus 
aureus (VISA) 

Intracellular access, 
membrane penetration, and 
suppression of cell wall 
synthesis 

24 

FU002 Vancomycin Hexaarginin 
(Cys-tagged) 

Enterococcus 
faecium (VRE), 
Staphylococcus 
aureus (VRSA) 

Superior pharmacokinetics 
and dual targeting: D-Ala-D-
Ala + membrane disruption 

25 

Van-Hec Vancomycin Hectate (Hec) MRSA, 
Staphylococcus 
aureus (VRSA) 

Bacterial wall integrity disruption 
and synergistic death through 
various mechanisms 

26, 27 

VPCs (e.g. 
VPC11) 

Vancomycin LPS-binding 
peptides 

E. coli AB1157 
 A. baumannii,  
K. pneumoniae 
PA01 

P. aeruginosa 

LPS interaction, gram-negative 
targeting, and altered 
antimicrobial profile 

 

28,29 

Cephalotin-D-
Bac8c 
(Leu2,5) 

Cephalotin D-Bac8c 
(Leu2,5) 

E. coli, MRSA Prodrug: decreased toxicity due 
to β-lactamase-induced AMP 
release 

30 

MSI-78-
ACA/ADCA 

Cephalosporin MSI-G78, CA 
(1-7) M (2-9), 
des-Chex1 

A.baumannii, MDR, 

A.baumannii156 
Direct membrane binding 
combined with intracellular β-
lactam activity 

31 

Amp-2P2-2, 
Amp-Oncocin 
(e.g. 37) 

Ampicillin Magainin 
analog 2P2-
2/Oncocin 

A. baumannii 
ATCC19606, 
E. coli BW25113, 

S.epidermidis 
ATCC12228 

AMP facilitates delivery; β-lactam 
activity is restored in resistant 
bugs; disulfide-cleavable linker 

 

32, 33 

Pentobra Tobramycin 12-merAMP P.acnes, E. coli, 
S.aureuspersisters 

Ribosomal suppression within 
cells combined with membrane 
disruption 

34, 35, 36 
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membranes, resistance to them is comparatively 
uncommon 39. The most common method of action for 
AMPs is permeabilization and the creation of pores within 
the cytoplasmic membranes, which allows them to affect 
bacteria that grow slowly or not at all 40. The capacity to 
function at several phases of biofilm development and by 
various modes of action, such as down-regulating QS, 
eliminating pre-formed biofilm, preventing biofilm 
formation, and preventing adhesion, are additional 
potentials of AMPs 41. Additionally, AMPs frequently work 
against bacterial strains that are resistant to many drugs. 
Although the functions of QS in biofilm formation are well 
understood, there are still few reports of AMPs that can 
block the quorum sensing systems employed by the various 
bacterial pathogens. 

Even though AMPs have promising properties as potential 
therapeutics, there are limitations that must be addressed 
for further development. The high concentrations of salt, 
anionic proteins, and polysaccharides found in biological 
fluids, and the inactivation of AMPs by host and bacterial 
proteases during infection cause AMPs to significantly lose 
their antimicrobial potency when present in biological fluids 
(such as serum and saliva) as opposed to non-physiological 
conditions (such as phosphate buffer)42. By forming a 
hydrated and charged environment around the bacterial 
surface, biofilms including bacterial DNA and other 
polymers can block cationic AMP LL-37's access 43. Human 
cells could be harmed by AMPs that are not of human origin. 
The main ingredient in the venom of European honeybees 
(Apis mellifera) is melittin, an alkaline polypeptide with 26 
amino acid residues that have been shown to be lytic to 
normal, healthy cells, including erythrocytes 44. Low 
viscosity and difficulty administering high-dose protein 
formulations subcutaneously with a volume limitation of 
less than 1.5 mL are caused by poor physical-chemical 
characteristics, such as protein aggregation, particulate 
formation, and reversible self-association 45. Additionally, 
AMPs may be vulnerable to proteolytic breakdown. Because 
of the intricate procedures required for their extraction, 
isolation, and purification, AMPs are costly and challenging 
to produce in high amounts46 . 

Future perspective and clinical trial: 

Conventional antibiotics are anchored to an AMP or CPP 
using an appropriate bifunctional linker to create antibiotic-
AMP–AMP conjugates. The N-terminus and the C-terminus 
are the two places of attachment for the peptide. Generally 
speaking, the linker falls into one of two categories: 
cleavable stimuli-responsive linker or stable covalent linker. 
Upon entering the bacterial cell, the antibiotic and the AMP 
could each work separately, targeting their respective 
locations, thanks to cleavable stimuli-responsive linkers. On 
the other hand, the conjugate molecules work as a single, 
multimodal antibacterial chemical if they stay together. As 
a result, they can attach to and influence their targets at the 
same time, possibly exhibiting different dynamics from the 
constituent parts. 

AMPs may be able to inhibit the expansion of biofilms while 
not always eliminating all microorganisms, such as Nal-P-
113 against Porphyromonas gingivalis W83 biofilm 
formation; thus, the authors propose combining it with 
other drugs currently used for the oral treatment of this 
potentially virulent bacterium. Similarly, some studies 
report that the inclusion or structural modification of AMP 
could improve their synergistic or combined effect; for 
example, chimeric peptide-Titanium conjugate (TiBP1-
spacer-AMP y TiBP2-spacer-AMP) against Streptococcus 
mutans, Staphylococcus epidermidis, and Escherichia coli47 , 
A3-APO (proline-rich AMP) combined with imipenem 
against ESKAPE pathogens, biofilm-forming bacteria, and in 
vivo murine model 48,49. Furthermore, it was noted that 
adding fatty acids to the C terminal could increase the 
specificity and efficacy of AMPs against superbugs and their 
corresponding biofilms 50.  

By using AI, various types of AMP can be synthesized. We 
can design peptides of our own choice. By knowing the exact 
effect of AMPs and their target sites, different AI tools can 
form those AMPs that show more efficacy against biofilm 
rather than normal. In the future experiments should be 
done about how AI can make the delivery system of those 
Antibiotic peptide conjugates more preciously so that 
mammalian cells remain unaffected. 

Table 3: Strategies to enhance the efficacy of antibiotic peptide conjugate 

Strategies Description Examples with benefits References 

Prodrug In order to lessen toxicity, 
an inactive form of AMP 
becomes active in 
infection settings. 

P-dpMtx: Targets Mycobacterium tuberculosis in 
macrophages by combining an anionic peptide, 
cephalosporin linker, and delivery peptide. 

Pro-WMR: Less harmful prodrug reactivated in lung 
fluid from cystic fibrosis by neutrophil elastase 

51, 52, 53 

Conjugation AMPs can be covalently 
attached to other 
functional molecules to 
improve stability or 
targeting. 

Increased activity in high salinity is a result of AMP 
rather than the antibiotic Levofloxacin–Pep-4. 
Conjugate of dithiocarbazate and CPP: Wide-ranging 
effect on S. aureus. 

Hyperbranched polyglycerol plus aurein 2.2: 
Enhanced effectiveness and biocompatibility 

54, 55, 56 
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The majority of AMPs currently undergoing preclinical and 
clinical studies were created with topical uses in mind. 
Catheter site infections, cystic fibrosis, acne, and wound 
healing are a few examples of indications. Despite showing 
promise in Phase III clinical trials, two AMPs, Omiganan and 
Pexiganan, have not been approved for clinical use. 
Pexiganan, a synthetic variant of magainin 2 and the most 
studied AMP in terms of drug development, was developed 
as a novel topical broad-spectrum antibiotic to treat mild-
to-moderate diabetic foot ulcer infections 65, 66, and 
Omiganan was developed as a topical gel to prevent 
catheter-associated infections. New antimicrobial peptides 
with enhanced kinetics, selectivity, and killing effectiveness 
against specific bacteria are called Selectively Targeted 
Antimicrobial Peptides (STAMPs). The semi-synthetic 
lipoglycopeptide oritavancin is being developed 
therapeutically to treat significant Gram-positive infections, 
including vancomycin-resistant S. aureus (VRSA), 
methicillin-susceptible [MSSA], and methicillin-resistant 
[MRSA]. Vancomycin's killing kinetics are much slower than 
its 67. In clinical settings, a class of CAMPs called polymixins 
has been used as a last option to treat Gram-negative 
bacterial infections 68. 

CONCLUSION 

The combinatorial therapy is giving promising results. In the 
future work should be done on the delivery system of this 
combination (antibiotic-peptide conjugate). Through AI 
different unique AMPs will be generated and those also 
definitely give better results. This combinatorial therapy can 
be used to treat many untreatable diseases but overuse or 
improper use may lead to resistance against them like 
antibiotic resistance. Thus, this therapy should be done in a 
dose-dependent manner. 

In the near future, many more AMPs will be introduced in 
the field of medical science, and hope those AMPs will show 
great efficacy in combination with Antibiotics against drug-
resistant pathogens. 
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