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ABSTRACT 

Diabetic nephropathy and non-diabetic renal disease are two major causes of chronic kidney disease in patients with diabetes, often 
presenting with overlapping clinical features but requiring distinctly different management strategies. Traditional diagnostic 
approaches, especially renal biopsy, though definitive, are invasive and not feasible for routine use. Recent years have witnessed 
rapid progress in the development of non-invasive diagnostic models that leverage systems biology, advanced imaging, and artificial 
intelligence for differential diagnosis. Multi-omics platforms, including metabolomics, transcriptomics, and proteomics, have 
identified promising biomarker signatures capable of distinguishing diabetic nephropathy from non-diabetic renal disease. Imaging 
techniques combined with machine learning, particularly deep learning-assisted histopathology and renal ultrasound localization 
microscopy, have further improved diagnostic precision. Additionally, integrative prediction models incorporating clinical, molecular, 
and imaging data are being validated to offer personalized diagnostic pathways. This review comprehensively explores the latest 
advancements in differential diagnostic strategies for Diabetic nephropathy and non-diabetic renal disease, with an emphasis on 
biomarker discovery, computational model development, and translational potential. The findings aim to support a shift from invasive 
diagnostics toward clinically viable, non-invasive, and patient-centered approaches in nephrology. 
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INTRODUCTION 

iabetic nephropathy (DN) and non-diabetic 
nephropathy (NDN), also referred to as non-diabetic 
renal disease (NDRD), represent two distinct clinical 

and pathological categories of chronic kidney disease (CKD) 
in patients with diabetes mellitus. DN is a microvascular 
complication that primarily results from prolonged 
hyperglycemia and is characterized histopathologically by 
mesangial expansion, thickening of the glomerular 
basement membrane, podocyte loss, and 
glomerulosclerosis.1,2 In contrast, NDN includes a 
heterogeneous group of renal diseases unrelated to 
diabetes, such as IgA nephropathy, membranous 
nephropathy, hypertensive nephrosclerosis, and 
tubulointerstitial nephritis.3 These conditions differ 
significantly in etiology, histopathology, clinical progression, 
and response to therapy. 

In diabetic individuals presenting with proteinuria or 
declining renal function, DN is often presumed without 
histological confirmation. However, studies have reported 
that a substantial proportion (up to 40%) of such patients 
may have NDN or mixed forms of nephropathy.4,5 
Differentiation between DN and NDN is therefore critical, as 
the underlying disease process guides the choice of therapy. 
DN management typically focuses on optimizing glycemic 
control, lowering blood pressure, and using renin–
angiotensin–aldosterone system (RAAS) blockers and SGLT2 
inhibitors.6 In contrast, NDN may require disease-specific 
interventions, such as immunosuppressive therapy for 
glomerulonephritides or steroids for tubulointerstitial 
nephritis.3,7 

The current gold standard for distinguishing DN from NDN is 
renal biopsy, which provides definitive histological insights. 
Despite its diagnostic accuracy, renal biopsy is invasive, 
associated with procedural risks (e.g., hemorrhage, 
arteriovenous fistula), and is not feasible in patients with 
coagulopathies, solitary kidneys, or poor general 
condition.4,8 These limitations make non-invasive diagnostic 
strategies highly desirable for broader clinical application. 
Albuminuria and estimated glomerular filtration rate (eGFR) 
are commonly used clinical markers to assess renal function 
and damage in diabetes. While albuminuria (measured by 
the urinary albumin-to-creatinine ratio) has long been 
considered a hallmark of DN, recent evidence indicates that 
a substantial subset of patients with DN may not exhibit 
elevated albumin levels—a condition referred to as non-
albuminuric diabetic kidney disease.6,9 Moreover, 
albuminuria is not specific to DN and can occur transiently 
due to physical exertion, fever, urinary tract infections, or 
use of medications like NSAIDs and statins.10 eGFR, though 
useful, is an indirect and delayed indicator of nephron loss, 
and is influenced by age, sex, muscle mass, and protein 
intake.11 

In response to the limitations of conventional biomarkers, 
recent research has focused on identifying novel, non-
invasive biomarkers for early and accurate discrimination 
between DN and NDN. Urinary biomarkers such as 
neutrophil gelatinase-associated lipocalin (NGAL), kidney 
injury molecule-1 (KIM-1), monocyte chemoattractant 
protein-1 (MCP-1), liver-type fatty acid-binding protein (L-
FABP), and serum markers like TNF receptor-1 and -2 have 
shown promise in early-stage detection and differential 
diagnosis.12,13 Multi-omics technologies have further 
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advanced the field by enabling simultaneous analysis of 
metabolomic, transcriptomic, and proteomic data to 
identify disease-specific molecular signatures. Recent 
studies have demonstrated that integrated omics-based 
panels, when combined with clinical parameters, can 
significantly enhance diagnostic precision. Luo et al. (2024) 
employed LC-MS-based metabolomic profiling and 
identified unique low-molecular-weight metabolites 
associated with early diabetic kidney injury.14 In parallel, 
transcriptomic studies have revealed the differential 
expression of genes involved in inflammation, oxidative 
stress, and fibrosis in DN compared to NDN.15 

Artificial intelligence (AI) and machine learning (ML) have 
also been increasingly adopted to develop predictive 
diagnostic models that integrate clinical, biochemical, and 
imaging data. Deep learning algorithms applied to digital 
renal biopsy images have achieved high accuracy in 
identifying interstitial fibrosis and tubular atrophy, key 
indicators for DN staging.16 ML models using routine clinical 
parameters combined with omics-derived biomarkers have 
shown high discriminatory performance, with some 
achieving area under the receiver operating characteristic 
curve (AUC) values exceeding 0.95.17 Advancements in renal 
imaging techniques, including contrast-enhanced 
ultrasound and novel MRI-based methods, offer additional 

opportunities for non-invasive assessment of renal 
structure and function. Recent progress in ultrasound 
localization microscopy, capable of visualizing the renal 
microvasculature, may further aid in distinguishing between 
DN and NDN based on vascular integrity and perfusion 
patterns.18 

Modern Biomarkers 

In ND, biomarkers mirror key pathophysiological 
mechanisms such as hyperglycemia-induced oxidative 
stress, inflammation, glomerular injury, and tubular 
damage. For instance, markers like albuminuria indicate 
glomerular permeability changes, while KIM-1 (Kidney 
Injury Molecule-1), NGAL (Neutrophil Gelatinase-Associated 
Lipocalin), and TNFR1 (Tumor Necrosis Factor Receptor 1) 
reflect tubular injury and systemic inflammation. The 
biomarkers used in ND are listed in Table 1. Emerging 
biomarkers such as soluble urokinase plasminogen activator 
receptor (suPAR) and specific urinary metabolites offer 
earlier detection of kidney damage before conventional 
clinical indicators such as eGFR decline or overt proteinuria. 
These biomarkers help enhance diagnosis, predict 
progression, and guide therapeutic interventions in DN 
patients.19-21 The typical mechanism of biomarkers in 
diabetic neuropathy is illustrated in Figure 1.  

Table 1: Modern biomarkers used in diabetic nephropathy. 

Category Biomarker Biological Source Clinical Relevance References 

Inflammatory 
markers 

TNF receptor 1 (TNFR1) Serum Predicts DN progression and 
ESRD risk 

[22] 

Interleukin-6 (IL-6) Serum Elevated in DN; reflects 
inflammatory status 

[23] 

Tubular injury Kidney Injury Molecule-1 
(KIM-1) 

Urine Sensitive early biomarker for 
tubular injury in DN 

[24] 

Neutrophil Gelatinase-
Associated Lipocalin (NGAL) 

Urine Indicates tubular damage 
before albuminuria onset 

[25] 

Fibrosis markers Transforming Growth Factor-
β1 (TGF-β1) 

Urine/Serum Promotes fibrosis; elevated in 
progressive DN 

[26] 

Oxidative stress 8-Hydroxy-2′-
deoxyguanosine (8-OHdG) 

Urine Marker of oxidative DNA 
damage in renal cells 

[27] 

Endothelial 
dysfunction 

Endothelin-1 (ET-1) Plasma Associated with glomerular 
endothelial injury 

[28] 

Metabolomics α-Ketoglutarate, 3-
Hydroxybutyrate 

Urine/Serum Discriminative in DN vs NDN 
classification using ML 

[20] 

Proteomics Soluble Urokinase 
Plasminogen Activator 
Receptor (suPAR) 

Serum Elevated in glomerular 
damage and progressive DN 

[19] 

Genomic markers ELMO1, SLC2A1 gene 
polymorphisms 

DNA Linked to DN susceptibility 
and progression 

[29] 

Transcriptomics miR-21, miR-29a Blood/Urine Regulate fibrosis and 
inflammation-related 
pathways 

[30] 
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Figure 1: Biomarkers in diabetic neuropathy 

Recent advances in metabolomics have revealed its value in 
identifying early metabolic alterations associated with ND. 
Yuanyuan Luo et al. (2024) conducted a comprehensive 
review of studies between 2011 and 2023, highlighting how 
low-molecular-weight metabolites, identified via LC-MS and 
NMR, provide non-invasive biomarkers capable of 
differentiating DN from NDRD.14 Key findings include 
dysregulation of α-ketoglutarate and disturbances in 
glycolysis and the tricarboxylic acid (TCA) cycle, which 
appear consistently in DN but not in NDRD.31 These 
metabolic patterns may precede overt changes in estimated 
glomerular filtration rate (eGFR) or albuminuria, positioning 
metabolomics as a powerful tool for early diagnosis and 
disease stratification. 

Chronic low-grade inflammation plays a pivotal role in the 
pathogenesis of DN. Inflammatory indices such as the 
neutrophil-to-lymphocyte ratio (NLR) and systemic 
immune-inflammation index (SII) have been found to 
correlate positively with disease severity in DN.32 Elevated 
NLR has been associated with increased albuminuria and 
glomerular injury, with an adjusted odds ratio of 
approximately 1.88 for DN risk in diabetic patients.33 

Similarly, both SII and SIRI have demonstrated independent 
predictive value for all-cause and cardiovascular mortality in 
patients with diabetic nephropathy, with hazard ratios 
reaching 1.49 and 1.62, respectively, and SIRI showing a 
particularly strong association with kidney disease mortality 
(HR = 2.74).32 

Secretory leukocyte protease inhibitor (SLPI), an anti-
inflammatory molecule secreted by renal epithelial cells, is 
gaining attention as a novel biomarker. SLPI levels have 
been shown to correlate with declining eGFR and increased 
proteinuria in DN, suggesting its role in tubular protection 
and injury response.34 Vascular endothelial growth factor 
(VEGF), a key mediator of angiogenesis and endothelial 
permeability, is often elevated in DN and is associated with 
poor glycemic control and disease progression, particularly 
in elderly patients with type 2 diabetes.35 Together, NLR, SII, 
SLPI, and VEGF represent a composite panel of systemic 
inflammatory biomarkers with emerging relevance in DN 
diagnosis and prognosis. 

Recent genetic studies have focused on polymorphisms in 
the interleukin-6 receptor (IL6R) gene, especially the 
rs2228145 variant, about DN susceptibility. A 2023 case-
control study showed that AC and CC genotypes of IL6R 
rs2228145 were significantly more frequent in DN patients 
compared to healthy controls (24.1% and 9.3% vs. 10.7% 
and 6.7%, respectively), with the C allele conferring a nearly 
twofold increased risk.36 This single nucleotide 
polymorphism affects IL-6 signaling, a cytokine pathway 
intricately involved in glomerular inflammation and fibrosis, 
thus supporting its use in genetic risk stratification for DN.  

The IL-6 gene polymorphisms such as rs1800796 (GG 
genotype) and rs1524107 (CC genotype) have been 
significantly associated with an increased risk of diabetic 
nephropathy progression in type 2 diabetes patients, with 
adjusted hazard ratios of 2.02 and 2.08, respectively, in a 
prospective 5.3-year cohort study.37 

Genetic and transcriptomic models 

Differentiating DN from NDN is clinically complex due to 
overlapping renal manifestations. As renal biopsy is invasive 
and not feasible for all patients, genomics and 
transcriptomics are gaining attention for non-invasive, 
molecular-level diagnosis. Single-cell RNA sequencing 
(scRNA-seq) offers unprecedented resolution to identify 
disease-specific signatures in individual renal cell types. In 
2019, Wilson et al. demonstrated that DN kidneys exhibit 
distinct transcriptional changes in podocytes, proximal 
tubular cells, and endothelial cells, including early activation 
of stress-response genes such as TXNIP, and adhesion 
molecules like VCAM1, which were absent in normal 
kidneys.38 These markers represent early disease activity 
before clinical symptoms manifest. Further refining this 
approach, Lu et al. (2022) used scRNA-seq to explore 
immune cell profiles in DN and revealed macrophage-
specific overexpression of EIF4B, PRKCB, and RICTOR, 
indicating the involvement of mTOR/AKT signaling in 
diabetic kidney inflammation and fibrosis.39 These insights 
allow researchers to define not just gene markers but also 
pathways that could guide targeted therapy, distinguishing 
DN from common NDNs such as IgA nephropathy or minimal 
change disease. 

Bulk RNA sequencing studies also provide valuable 
transcript-level comparisons between DN and NDN. In 2011, 
Woroniecka et al. first reported overexpression of 
extracellular matrix genes (COL4A1), chemokines (CCL2), 
and inflammation-associated genes (SERPINA3) in 
glomerular tissues from DN patients.40 In a comparative 
study by Dong et al. showed that IL1B, TGFB1, and CXCL10 
were significantly elevated in DN relative to membranous 
nephropathy (a typical NDN), while podocyte injury markers 
like PLA2R1 were more specific to NDN.41  

These molecular distinctions have diagnostic potential in 
biopsy-sparing cases. In 2023, Guo et al. developed a 
transcriptomic diagnostic model consisting of 14 hub genes, 
including SPP1, TGFBI, and TIMP1, achieving an AUC of 0.92 
in differentiating DN from other glomerular diseases.42 
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These genes were validated using qRT-PCR and immuno 
histochemistry in biopsy specimens, suggesting future 
applications in liquid biopsy or urinary mRNA assays. 

Polygenic risk scores (PRS) offer a genomic lens into DN 
susceptibility. In 2018, Sandholm et al. conducted a GWAS 
in type 1 diabetes cohorts, identifying risk loci such as 
COL4A3, UMOD, and ELMO1, which are associated with 
basement membrane integrity and tubulointerstitial fibrosis 
in DN.43 In the CREDENCE trial (n=3080), higher HbA1c 
variability in T2D patients with CKD was independently 
linked to increased cardiovascular and renal risks. This aligns 
with meta-analyses by Xu et al. and Li et al., supporting its 
prognostic value beyond mean HbA1c. Unlike prior studies, 
greater variability was observed in younger patients, 
possibly due to advanced CKD or unstable control. While 
current KDIGO guidelines overlook variability, agents like 
SGLT2 inhibitors, as shown in EMPA-REG OUTCOME, may 
reduce associated risks. Overall, HbA1c variability shows 
promise as a clinical risk marker in this population.44 
However, Jung et al. (2025) emphasized the importance of 
population-specific calibration, noting reduced PRS utility in 
Asian populations without allele-frequency adjustments.45 
Integrative models are emerging as a comprehensive 
solution. In 2024, Li et al. conducted a multiomics analysis 
integrating scRNA-seq, kidney cortex proteomics, pQTL, 
GWAS, and metabolomics data to identify key molecular 
drivers of diabetic kidney disease (DKD).  

Using data from the Kidney Precision Medicine Project and 
the Diabetes Heart Study, they identified AKR1A1 as a 
central biomarker, with consistent downregulation across 
transcriptomic and proteomic layers in proximal tubule 
cells. This integrative approach highlights AKR1A1 as a 
potential molecular hub implicated in DKD progression via 
multiple intersecting pathways.46 This represents a shift 
toward systems-level, precision nephrology. 

Imaging and histopathologic advances  

The distinction between DN and NDN has benefited greatly 
from recent innovations in imaging and histological 
interpretation, particularly with the integration of AI and 
high-resolution microvascular imaging. Traditional 
histopathology, though central to diagnosis, suffers from 
interobserver variability and limited reproducibility, which 
new technologies are addressing. Deep learning (DL) 
approaches using convolutional neural networks (CNNs) 
have shown high accuracy in detecting glomerular features 
characteristic of DN.47  

Weis et al. developed a CNN model that identified nine 
glomerular morphologies, including mesangial expansion 
and capillary loop thickening, with inter-rater agreement 
exceeding κ=0.84 [49]. Similarly, Juang et al. used an 
Xception-based architecture to classify glomerular sclerosis, 
achieving a 94.7% accuracy and 93.8% F1-score.37 In 2019, 
Ginley et al. developed a computational pipeline integrating 
CNNs and unsupervised learning to classify renal biopsies in 

DN. The model segmented glomerular structures, including 
nuclei, capillary lumina, and Bowman’s spaces, achieving 
93% balanced accuracy in boundary detection, 94% 
sensitivity and 93% specificity for nuclei, and 95% 
sensitivity and 99% specificity for other glomerular 
components. Diagnostic concordance with expert 
pathologists reached Cohen’s κ of 0.55–0.68, 
demonstrating that algorithmic interpretation can match 
expert-level histopathology and reduce interobserver 
variability in DN assessment.50  

Further, projects like NEPTUNE and KPMP have developed 
whole-slide image analysis systems for glomerular counting, 
peritubular capillary assessment, and inflammation grading, 
facilitating standardized, scalable biopsy evaluations.51 To 
overcome limited datasets, generative adversarial networks 
(GANs) are now used to synthetically augment rare 
pathology slides, enhancing model robustness. The GAN are 
powerful tools in digital histopathology, enabling realistic 
image synthesis, stain normalization, and virtual staining. 
They reduce reliance on annotated data and can simulate 
rare patterns, enhancing diagnostic workflows. However, 
concerns about bias, authenticity, and ethical regulation 
must be addressed to ensure safe clinical integration.52 

Parallel advancements in ultrasound localization 
microscopy (ULM) have redefined vascular imaging. ULM, 
unlike conventional Doppler ultrasound, enables sub-
capillary resolution using microbubble tracking. Qiu et al. 
demonstrated ULM’s ability to reveal altered blood flow 
dynamics in hypertensive nephrosclerosis, a typical NDN 
model, not detectable by standard ultrasound.53 In humans, 
Huang et al. used clinical ULM to visualize microvascular 
flow within 10 sec per scan, improving resolution six-fold 
and establishing feasibility in real-time nephrology 
assessments.54 Enhanced signal processing methods such as 
deep-learning-based deconvolution and geometric 
localization have further improved ULM accuracy, even 
under high microbubble load.55,56 Patterns observed 
through ULM, such as uniform rarefaction in NDN vs 
heterogenous perfusion in DN, may serve as future 
diagnostic signatures. These technologies, when combined 
with AI-powered histopathology, could offer a dual-
modality framework for distinguishing renal pathologies.  

While additional imaging techniques such as functional MRI, 
diffusion tensor imaging, and contrast-enhanced ultrasound 
show promise in mapping fibrosis and oxygenation, their 
clinical integration remains limited due to cost and technical 
complexity.57,58 In contrast, AI histopathology and ULM are 
rapidly progressing toward routine clinical use, and their 
synergy may soon become central to non-invasive 
nephropathy classification and monitoring. The relative 
advantages and diagnostic caveats of histological, imaging, 
and biomarker-based modalities for distinguishing DN from 
NDN are summarized in Table 2. 
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Table 2: Advantages and Limitations of Diagnostic Modalities for DN vs. NDN. 

Diagnostic 
Approach 

Main Advantages Limitations Clinical Readiness References 

Renal Biopsy Gold standard, 
histopathological 
confirmation 

Invasive, 
contraindicated in 
some patients 

High [3] 

Albuminuria and 
eGFR 

Widely available, non-
invasive 

Low specificity for DN 
vs. NDN 

High [59] 

Proteomic 
Biomarkers 
(CKD273) 

Early detection, non-
invasive 

Cost, limited access in 
LMICs 

Moderate [60] 

Metabolomic 
Panels 

High sensitivity for 
early-stage DN 

Expensive platforms, 
inter-lab variability 

Moderate [21] 

AI-Based Models 
(XGBoost, Random 
Forest) 

High accuracy, 
integrates complex 
data 

Requires 
standardization, low 
interpretability 

Low to Moderate [61] 

Deep Learning 
Histopathology 

Quantitative, scalable 
tissue feature 
detection 

Requires digital 
infrastructure, data 
volume 

Low to Moderate [62] 

 

AI-driven clinical prediction models 

AI and machine learning are rapidly transforming the 
diagnostic landscape in nephrology by enabling non-
invasive, high-accuracy differentiation between DN and 
NDN. Traditional approaches, such as logistic regression, 
have gained renewed strength through integration with 
advanced feature selection algorithms like Boruta.63 

Comparative diagnostic performance (AUROC or accuracy) 
of recent biomarker, omics, and AI-based models in 
differentiating DN from NDN are picturized in Figure 2. In a 
retrospective study using real-world data from the 
DARWIN-Renal cohort, Dei Cas et al. (2024) developed a 
Boruta-assisted logistic regression model incorporating 
clinical, laboratory, and treatment variables. The model 
achieved an AUROC as high as 0.98, demonstrating 
excellent discriminative ability for predicting clinically 
meaningful eGFR decline in patients with diabetes.64 
Beyond logistic regression, machine learning models such as 
XGBoost, random forests, and deep neural networks have 
been explored. In 2022, Wang et al. demonstrated the 
application of the XGBoost algorithm in predicting type 2 
diabetes using clinical, lifestyle, and demographic variables 
from a Beijing-based population. Compared to conventional 
machine learning models like SVM, Random Forest, and K-
NN, XGBoost achieved the highest predictive performance, 
with an AUROC of 0.9182 and accuracy of 89.1%. The study 
emphasized XGBoost’s robustness, efficiency, and superior 
generalization, positioning it as a highly effective tool for 
early diabetes risk stratification and potential clinical 
deployment.65 Inn 2022, Hao et al. developed a multi-focus 
video fusion method combined with YOLOv4 ( You Only 
Look Once version 4) deep learning to detect urine red 
blood cells for diabetic nephropathy diagnosis, achieving a 
mean average precision of 0.915 and improved diagnostic 
accuracy over traditional threshold methods.66 

 

Figure 2: Comparative diagnostic performance (AUROC or 
accuracy) of recent biomarker, omics, and AI-based models 
in differentiating DN from NDN 

Interpretability remains central to clinical adoption. SHapley 
Additive exPlanations (SHAP) have been used to elucidate 
variable influence on predictions, with studies showing NLR 
and metabolomic indices contributing most to DN 
classification, while urinary KIM-1 and TNFR1 pointed to 
NDN. These models unify heterogeneous data types, 
clinical, molecular, imaging into actionable, interpretable 
diagnostic outputs.67,68 A 2025 study by Raza et al. 
integrated kidney injury biomarkers KIM-1 and TNFR1 (plus 
ACR) into a multiparametric panel, achieving AUC 0.98, with 
90% sensitivity and 96.7% specificity for early DKD 
detection. The authors proposed combining these markers 
with ML models (e.g., XGBoost with SHAP) to enhance early 
detection.69 Despite these advances, challenges remain. 
Model generalizability across populations, data 
standardization, regulatory approval for software-based 
diagnostics, and real-world integration must be addressed. 
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The emerging non-invasive diagnostic modalities for 
diabetic vs non-diabetic nephropathy are illustrated in 
Figure 3. 

 

Figure 3: Emerging non-invasive diagnostic modalities for 
diabetic vs non-diabetic nephropathy 

Clinical Translation and Challenges 

Despite substantial progress in developing omics-, imaging-
, and AI-based diagnostic models for differentiating DN from 
NDN, their clinical translation remains limited due to key 
practical and systemic challenges. A major limitation is the 
lack of external validation and data standardization. Many 
models are built using retrospective, single-center datasets, 
which restrict their generalizability across diverse 
populations. When applied to external cohorts, 
performance often diminishes due to demographic 
heterogeneity, differing disease prevalence, and variations 
in clinical data collection.21,70 Sample processing variability, 
such as metabolomic platform differences or inconsistent 
imaging protocols which further undermines reproducibility 
and clinical adoption. 

Another barrier is the integration into routine clinical 
workflows. Most healthcare infrastructures are not 
equipped to handle high-dimensional data inputs like 
transcriptomic profiles or AI-derived risk probabilities. 
Current electronic health records (EHRs) are seldom 
optimized for incorporating omics data or AI tools, and 
nephrologists may lack training to interpret machine 
learning outputs effectively.71 Ethical and equity concerns 
add further complexity. The use of genomic and proteomic 
data raises issues related to data privacy, consent, and long-
term security. Additionally, AI models trained on 
unbalanced datasets may perpetuate diagnostic bias, 
especially in underrepresented ethnic groups. Without 
proper transparency and fairness audits, there is a risk of 
worsening disparities in renal care .72 

Cost-effectiveness and scalability remain pressing concerns. 
Advanced technologies like RNA sequencing, proteomics, 
and ULM require specialized infrastructure and trained 
personnel, which may not be feasible in low-resource 
settings. Moreover, reimbursement for such diagnostics is 
unclear, limiting incentive for institutional adoption. Health 
economic analyses are urgently needed to support policy 

and reimbursement decisions.73 The regulatory framework 
for AI-enabled diagnostics is also evolving. Regulatory 
agencies like the FDA and EMA have begun addressing 
software-as-a-medical-device (SaMD) models, but most 
nephrology-focused AI tools have yet to undergo full 
regulatory evaluation. Challenges include dynamic model 
retraining, lack of real-time validation, and insufficient 
reporting of clinical performance in prospective settings.74 
Furthermore, real-world applicability remains limited. While 
multi-modal models have shown strong performance in 
academic studies, their use in community nephrology or 
primary care remains rare. Prospective trials, clinician 
training, and implementation infrastructure are essential to 
bridge the translational gap. 

Future Directions 

Future research in the differential diagnosis of ND and NDN 
should focus on building large, longitudinal multi-omics 
cohorts with biopsy-proven diagnoses. Most current studies 
rely on cross-sectional or retrospective data, which limits 
understanding of disease progression and hinders 
biomarker validation. Long-term follow-up of diverse 
patient populations using integrated clinical, 
transcriptomic, proteomic, metabolomic, and imaging data 
could help identify early diagnostic signatures and mixed 
disease phenotypes.21,75 Translating these signatures into 
clinical tools requires the development of regulatory-grade 
assays and point-of-care (POC) diagnostics. Although 
biomarkers like TNFR1, KIM-1, and urinary metabolites 
show strong discriminatory potential, few are available in 
validated diagnostic formats. There is an urgent need to 
convert promising multi-omics biomarkers into cost-
effective, rapid tests suitable for clinical laboratories or 
decentralized settings.76 

AI models also need to become more transparent and 
clinically embedded. Current black-box algorithms often 
lack interpretability, reducing clinician confidence. 
Techniques like SHAP and LIME can enhance transparency 
and support clinical validation. Moreover, integrating these 
models into EHRs and clinical decision support systems 
(CDSS) would facilitate real-time application, helping 
nephrologists stratify patients non-invasively at the point of 
care. Additionally, mobile diagnostics, wearable sensors, 
and cloud-based platforms may contribute to real-time risk 
monitoring, enabling more personalized and continuous 
management of renal function. Future efforts must ensure 
that these innovations are equitably accessible and 
validated across global patient populations.77-79 

CONCLUSION 

The differential diagnosis between DN and NDN is critical for 
ensuring optimal clinical management in patients with 
diabetes-related renal impairment. Traditional diagnostic 
tools, including albuminuria levels, estimated glomerular 
filtration rate (eGFR), and renal biopsy, are limited by their 
invasiveness and diagnostic ambiguity. In contrast, recent 
advancements in molecular profiling such as metabolomics, 
transcriptomics, and proteomics which have identified 
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novel biomarkers that significantly enhance diagnostic 
specificity. Complementary progress in imaging modalities 
and deep learning–based histopathologic analysis has 
enabled non-invasive, automated tissue assessment, while 
AI-driven predictive models show high diagnostic 
performance using clinical, imaging, and omics data. Despite 
these innovations, real-world translation is hindered by 
challenges related to model validation, standardization, 
ethical concerns, and integration into clinical infrastructure. 
Moving forward, precision nephrology will require the 
development of longitudinal, multi-omics cohorts, 
regulatory-grade diagnostic assays, and interpretable AI 
models embedded into electronic health systems. Achieving 
this vision will depend on multi-disciplinary collaboration to 
deliver personalized, non-invasive, and scalable diagnostic 
solutions that improve outcomes across diverse patient 
populations. 
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