ABSTRACT

Pashanbheda or stone breaker is a well-known Indian drug referred to botanical name *Bergenia ligulata*. This plant already has been recognized for its role in dissolving kidney stone. Its pharmacological activity are antidiabetic, antipyretic, hepatoprotective, anticancer, antiprotozoal, diuretic, cardiovascular, antiscorbutic, antilithiatic, anti-inflammatory due to phytochemicals Bergenin, Pashaanolactone, β-Sitosterol, Stigmesterol, Tannic acid, Gallic acid, Parasyorbic acid, Isovaleric acid, 1,8-cineole present in Pashanbheda.

Keywords: Pashanbheda, stone breaker, *Bergenia ligulata*, Pharmacological activity, Phytochemicals.

INTRODUCTION

Bergenia ligulata belongs to family saxifragaceae. Pashanbheda, Pashana, Zakhmehayat, Asmaribheda, Ashmabh, Ashmabhed, Nagabhid, Upalbhedak, Parwatbhed and Shilabhed are the common name of *Bergenia ligulata*. It is called Stone breaker because it dissolv slabs. Rhizome is the medicinally used part of this. The plant *Bergenia ligulata* is main botanical source of Pashanbheda drug which is used in indigenous system of medicine.

SCIENTIFIC CLASSIFICATION

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Order</td>
<td>Saxifragales</td>
</tr>
<tr>
<td>Family</td>
<td>Saxifragaceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Bergenia</td>
</tr>
<tr>
<td>Species</td>
<td>ligulata</td>
</tr>
</tbody>
</table>

Bergenia ligulata is a perennial climbing plant that grow well in moist and shady areas of Afghanistan, Himalayas (Kumaon to Bhutan), South Tibet, Meghalaya, Lushai hills west Bengal (Darjeeling, Labha, Takdah, Rimbick (Kalimpong), Arunachal Pradesh (Nyam Jang Chu), Bhutan (Phuntsoling district, Deothang district, Ha district and Mongar district). It is found in Kyongnosla, Changu, Karponanag, Lachen to Thongu, Nathang, Prekchu - Tsokha, Pangolakha- Subaney Dara, Gangtok (domesticated) in sikkim. The flowers are white, pink or purple.

DISTRIBUTION

Kumaun Himalaya is rich in biodiversity and home of several medicinal plants. Our ancestors were aware of the medicinal values of Pashanbheda and proves are our ancient literatures like Ayurveda, Charaka Samhita, Susrata Samhita and Vaghbhatta which were known as divine truth of this plant. *Bergenia ligulata* is a well known Indian drug referred to as Pashanbheda or Stone breaker. It is an important medicinal plant of temperate Himalaya between 4,000 - 12,000 feet. Hooker (1888) has reported three species of this plant from India in the Flora of British India. Wehmer (1948) reported three species of *Bergenia* from India in the Wealth of India. Pande (1984) has observed one species i.e *Bergenia ligulata* from Almora district. Recently, Gaur (1999) reported only *Bergenia ligulata* from north-west Himalaya in the flora of the district Garhwal, north-west Himalaya. Sharma observed two species i.e *Bergenia ligulata* and *Bergenia stracheyi* from India in medicinal plants of India. Recently, Pangtey (2005) reported two species *Bergenia ligulata* from lower altitude and *Bergenia stracheyi* from higher altitude from kumaun Himalaya. The plant *Bergenia ligulata* is chief botanical source of 'Pashanbheda', drug in indigenous system of medicine. Already this plant has...
been recognized for its role in dissolving kidney stone. It is also effective in fever, eye ailments, dysentery and diarrhea, piles, inflammation, chronic ulcers etc. The traditional data of Pashanbheda is limited and more information will help in discovering new drugs for several diseases. Extensive survey in and around kumaun Himalaya revealed this plant found in mixed vegetation on rocky slopes in moist & shady habitats, predominantly on northern and western slopes.

Table 1: Traditional uses of *Bergenia ligulata*

<table>
<thead>
<tr>
<th>Location</th>
<th>Part used</th>
<th>Traditional Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribes of Dharchula (UP)</td>
<td>Root</td>
<td>Boils, cuts, wounds, and opthalmia, kidney stone, urinary complaints</td>
</tr>
<tr>
<td>Johari</td>
<td>Root</td>
<td>In asthma, urinary troubles</td>
</tr>
<tr>
<td>Kumaoni</td>
<td>Rhizome</td>
<td>In fever and thirst</td>
</tr>
<tr>
<td>Monpa(Arunachal Pradesh)</td>
<td>Leaf</td>
<td>In boils, cuts, wounds</td>
</tr>
<tr>
<td>Naga</td>
<td>Root</td>
<td>In lever complaints and TB</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Boils, cuts and wounds</td>
</tr>
<tr>
<td>Central Himalaya Region</td>
<td>Plant</td>
<td>In dizziness, headache, vertigo</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>For dissolving kidney stones</td>
</tr>
</tbody>
</table>

Table 2: Traditional Knowledge of Pashanbheda.

<table>
<thead>
<tr>
<th>Ailments</th>
<th>Plant Parts Used</th>
<th>Method Used</th>
<th>Community Reported Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney and Gall bladder stone</td>
<td>Rhizome</td>
<td>Dried powder is used</td>
<td>Local knowledgeable person, Van Rawat, Bhotiya and illiterate local people.</td>
</tr>
<tr>
<td>Wound / old wounds</td>
<td>Leaves and Rhizomes</td>
<td>Powder of dried leaves and rhizome are applied to heal old wounds</td>
<td>Local illiterate people, Buxa and Van Rawat.</td>
</tr>
<tr>
<td>Septic</td>
<td>Rhizome</td>
<td>Paste of rhizome used as antiseptic</td>
<td>Locals and Van Rawat.</td>
</tr>
<tr>
<td>Cough and cold</td>
<td>Leaves and Rhizome</td>
<td>Leaves and rhizome boiled with water and given in cold and cough.</td>
<td>Bhotiya.</td>
</tr>
<tr>
<td>Cut and Burns</td>
<td>Rhizome</td>
<td>Crushed rhizome mixed with curd and applied on burns</td>
<td>Bhotiya and Van Rawat.</td>
</tr>
<tr>
<td>Dysentery and Diarrhoea</td>
<td>Rhizome</td>
<td>Infusion of rhizome is taken orally for diarrhoea and dysentery</td>
<td>Locals, Van Rawat and Bhotiya.</td>
</tr>
<tr>
<td>Fever</td>
<td>Rhizome</td>
<td>Dried powder is given in fever</td>
<td>Buxa.</td>
</tr>
<tr>
<td>Asthma</td>
<td>Rhizome</td>
<td>Rhizome juice is given in acute asthama</td>
<td>Van Rawat and Buxa.</td>
</tr>
<tr>
<td>Gasto-intestinal problems</td>
<td>Rhizome</td>
<td>All kinds of intestinal problems are cured by chewing fresh rhizome</td>
<td>Local literate and illiterate people.</td>
</tr>
<tr>
<td>Eye ailments</td>
<td>Rhizome</td>
<td>Crushed rhizome sap is applied in eye diseases</td>
<td>Local knowledgeable people, Van Rawat and Bhotiya.</td>
</tr>
<tr>
<td>Septic pimples developed on the head of new born baby (Laizi)</td>
<td>Rhizome</td>
<td>Rhizome paste is applied</td>
<td>Local people, Bhotiya and Van Rawat.</td>
</tr>
<tr>
<td>Chronic ulcers</td>
<td>Rhizome</td>
<td>The rhizome is crushed and used in all kinds of ulcers</td>
<td>Van Rawat and Bhotiya.</td>
</tr>
<tr>
<td>Cutaneous infections</td>
<td>Rhizome</td>
<td>Rhizome paste is effective in cutaneous diseases</td>
<td>Local people.</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Rhizome</td>
<td>Paste of fresh rhizome is used</td>
<td>Local people.</td>
</tr>
<tr>
<td>Rheumatic</td>
<td>Rhizome</td>
<td>Rhizome paste is anti rheumatic</td>
<td>Local people.</td>
</tr>
<tr>
<td>Helmintic</td>
<td>Rhizome</td>
<td>Fresh & dried rhizome extract is used orally</td>
<td>Bhotiya.</td>
</tr>
<tr>
<td>Piles</td>
<td>Rhizome</td>
<td>Fresh & dried rhizome extract is used orally</td>
<td>Buxa, Bhotiya and Local people.</td>
</tr>
<tr>
<td>Tonsils</td>
<td>Leaves and Rhizome</td>
<td>Rhizome & leaves paste is applied externally</td>
<td>Bhotiya and Van Rawat.</td>
</tr>
<tr>
<td>Cardiac problems</td>
<td>Rhizome</td>
<td>Rhizome powder is given</td>
<td>Bhotiya.</td>
</tr>
<tr>
<td>Colitis</td>
<td>Rhizome</td>
<td>Rhizome paste cure internal wounds including colitis</td>
<td>Bhotiya.</td>
</tr>
<tr>
<td>Aphrodisiac</td>
<td>Rhizome</td>
<td>Rhizome powder is given to increase spermatozoa</td>
<td>Bhotiya.</td>
</tr>
<tr>
<td>Urinary diseases</td>
<td>Rhizome</td>
<td>Rhizome sap is taken orally in all kind of urinary problems</td>
<td>Locals, Van Rawat, Bhotiya and Buxa.</td>
</tr>
</tbody>
</table>
Taking reference from various ayurvedic medicinal books, \textit{Bergenia ligulata} is used as a medicine in different diseases as described:

Ayurveda: Leaf juice in urinary troubles, cold, hemorrhagic disease, distension of stomach and epilepsy.

Sushruta Samhita: In stones and sugars.

Charak Samhita: Useful in urinary complaints and stones.

Unani: In dissolving stones.

Chakradatta: In urinary troubles and stones.

Rajnighantu: In urinary disease.

Bhavaprakash: Astringent, bitter and sweet, purifies the urinary bladder.

\textit{Bergenia ligulata} root, rhizome, and whole plant is used for kidney and bladder stones, \(^9,17\) urinary problems, \(^18\) Rhizome is the main part or source of drug. It is light, cool, bitter, have useful effect in cough and cold, \(^19\) flowers are also consume as a form of pickled. \(^11\) With honey, \textit{Bergenia ligulata} is applied to gums in teething of children to allay irritation. \(^11\) \textit{Bergenia ligulata} has been reported to exhibit various pharmacological activities and thus has several traditional uses. It is used as an antidiabetic, \(^26\) antipyretic, \(^11,20,21\) and as a tonic. \(^15,22,23\)

Ethnobotanical study of upper siran velly in Pakistan show that \textit{Bergenia ligulata} (but pewa) used as diuretic, \(^11,24,26\) hepatoprotective, \(^11\) alcoholic extracts of \textit{Bergenia ligulata} showed anticancer, \(^9,27\) antiprotozoal, diuretic, cardiovascular, antiscorbutic, antilithiatic, \(^28\) litholytic property, \(^26\) anti-inflammatory, \(^9,26\) activity in dose dependent manner in rats. \(^29,30\)

\textit{Saxifraga ligulata} (\textit{Bergenia ligulata}) is used in formulation of herbal composition. Its composition is useful for caring the skin around the eyes. \(^29,31\) The plant \textit{Bergenia ligulata} showed in vitro, in vivo animals study for the activity of calcium oxalate monohydrate growth inhibition, decreases calcium phosphate nucleation, calcium oxalate inhibition, diuretic, hypermagneseous and antioxidant effects. \(^3,33,34\)

PHYTOCHEMICALS AND ITS ACTIVITY

Phytochemicals of rhizome

\textit{Bergenia ligulata} rhizome has many bioactive chemical constituents such as \textit{Paashaanolactone}, \(^35\) \textit{Arbutin}, \(^36,37,38\) \((+)-Afzelechin\(^2\) and \textit{Bergenin}\(^2\) \textit{Catechin} and Minerals, Vitamins, \textit{Albumin} (7.75%), \textit{Glucose} (5.5%), \textit{Mucilage}, \textit{Gallic acid} etc. \(^11,35,36\) \textit{Starch} (19%), \textit{Ash} (mostly calcium oxalate). \(^11,36\)

Phytochemicals of seeds

\textit{Seeds of Bergenia ligulata} contain \textit{Coumarin}, \textit{Tannic acid}, \textit{Gallic acid}, \textit{Minerals} and \textit{Wax}. \(^39\)

Phytochemicals of root

The root of \textit{Bergenia ligulata} showed the presence of alkaloids, steroids, flavonoids, terpenoids, tannins, glycosides, carbohydrates and saponins in preliminary investigation. \textit{β-Sitosterol}, \textit{Stigmasterol}, \textit{Tannic acid} and \textit{Gallic acid} were isolated by using thin layer and column chromatography. \(^40\)

In fact, the whole plant of \textit{Bergenia} can be used in medicine, but its active ingredients were mainly focused on Polyphenols, among which Bergenin is studied and applied most frequently. \(^41,44,46\) The volatile oil from roots of \textit{Bergenia ligulata} was analyzed by GC-MS. \((+)-(S)-\textit{Parasorbic acid} 47.45\%, \textit{Isovaleric acid} 6.25\%, 1,8-\textit{Cineole} 4.24\%, (Z)-\textit{Asarone} 3.50\%, and \textit{Terpinen-4-ol} 2.96\% were the most prominent constituents. \(^28\) From the rhizomes of \textit{B. ligulata} only Bergenin and \textit{β-sitosterol} have been isolated. \(^41,46\)
Quantification of Bergenin and (+)-Afzelechin

Rhizome, petiole and leaf (1gm each) were extracted with methanol and analysed by HPLC for the estimation of Bergenin and (+)-Afzelechin. Extraction of the rhizome material using three reflux periods (60, 90,120 min.) showed that a 90 min reflux periods time gave the highest yield of the two active constituents, Bergenin and (+)-Afzelechin. Thus a procedure involving two cycle of refluxes (90 min each) with methanol (50 ml) was found to be suitable for the complete quantification of Bergenin and (+)-Afzelechin in all the test samples. Bergenin was found to be the major component of B. ligulata rhizomes with the concentration being about 7 times greater than that of (+)-Afzelechin while the latter was not detected in the aerial parts (petiole, leaf). The content of Bergenin in the petiole and leaf was found to be less than 8 times of that found in the rhizomes. Therefore rhizomes from the major source of Bergenin and (+)-Afzelechin.45

Antidiabetic activity

The 80% ethanolic extract of B. ligulata rhizome was fractionated to investigate for α-glucosidase or antidiabetic activity. Sample solution were evaluated at dose levels of 5.0, 0.5, 0.05 mg/ml to obtain dose–response. The ethyl acetate extract exhibited an inhibitory effect of α-glucosidase activity. The α-glucosidase inhibitor was isolated by silica gel column chromatography with chloroform and methanol as eluents and identified as (+)-Afzelechin (L) by EI-MS, IR, H1 and C13 NMR spectroscopy. The inhibitory compound 12 was investigated in the inhibition of α-glucosidase activity at a concentration of 0.25 mm and the ID50 (50% Inhibition dose) value was 0.13 mm. For confirming the structure-activity relationship, compounds M-P were investigated in the inhibition of α-glucosidase activity test. Compound M-P inhibited 2.8%, 41.8%, 59.4% and 90.4% of α-glucosidase activity at a concentration of 0.25mm. The ID50 values of compound O and P were 0.14 and 0.05 mm respectively. Compound P had strongest inhibitory activity in this compound and IC50 value of P was 2-fold higher than those of L and O. Previously, α-glucosidase inhibitory activity of natural occurring flavan-3-ols has been reported.47,49 IC50 value of (+)-Catechin47 and (-)-Epicatechin48 were 12.8 and 0.18 mm respectively. Compound L, O and P showed more potent inhibitory activity than those of Catechins. This research suggests that the α-glucosidase inhibitor in B.ligulata was primarily (+)-Afzelechin.46

Anti-inflammatory activity

Evaluation of the anti-inflammatory activity of aqueous and 50% ethanolic extracts of the rhizomes of Bergenia ligulata are reported to attenuate the inflammatory response as determined by pharmacological and biochemical measurements. The treatment significantly decreased the inflammation. The activity level of succinate dehydrogenase (SDH), which has been reported to rise in inflammation,51 decreased in rats receiving the extract treatment. The study reports the radical scavenging activity of the rhizomes of B. ligulata, and establishes the therapeutic rationale of using B. ligulata in Indian System of Medicines.50,52,66

Antilithic activity

The alcoholic extract had no effect in preventing stone formation in rats (after the method of Lyon) but was of significant help in dissolving preformed stones. Low doses of Pashanabheda extract (0.5 mg/kg of alcoholic extract) promote diuresis in rats, but higher dose 100 mg/kg reduce the urine output and also reduce the diuresis produced by urea.53

The crude aqueous-methanolic extract of Bergenia ligulata rhizome (BLR) was studied using in-vitro and in-vivo methods. The result was that BLR inhibited calcium oxalate (CaC2O4) crystal aggregation as well as crystal formation in the metastable solutions and exhibited antioxidant effect against 1,1-diphenyl-2-picrylhydrazyl free radical and lipid peroxidation in the in vitro. BLR caused diuresis in rats accompanied by a saluretic effect. In an animal model of urolithiasis, developed in male wistar rats by adding 0.75% ethylene glycol (EG) in drinking water, BLR (5-10 mg/kg) prevented CaC2O4 crystal deposition in the renal tubules. The lithogenic
treatment caused polyuria, weight loss, impairment of renal function and oxidative stress, manifested as increased malondialdehyde and protein carbonyl contents, depleted reduced glutathione and decreased antioxidant enzyme activities of the kidneys, which were prevented by BLR. Unlike the untreated animals, EG intake did not cause excessive hyperoxaluria and hypocalciuria in BLR treated groups and there was a significant increase in the urinary Mg\(^{2+}\), instead of a slight decrease. These data indicate the antiurolithic activity in *Bergenia ligulata* mediated possibly through CaCl\(_2\), crystal inhibition, diuretic, hypermagnesuric and antioxidant effects and this study rationalizes its medicinal use in urolithiasis.\(^{14,16,19}\) Garimella et al studied urine or cell culture in vivo on *Bergenia ligulata* and the result was that the plant decreases calcium phosphate precipitation.\(^{55,66}\)

Anti-bradykinin activity

The alcoholic extract of *Bergenia ligulata* rhizome displays marked anti-bradykinin activity. Although it does not affect the action of 5-HT and acetylcholine on isolated guinea pig ileum. It has been shown to potentiate the action of adrenaline on guinea-pig trachea and ileum muscle. Its cardiotoxic, antiuretic and CNS depressant action on experimental models have been reported with large doses.\(^{60}\) It is unlikely that these effects will be encountered with the doses in clinical use. In rats, the LD\(_{50}\) of the aqueous extract was 650 mg/kg intraperitoneally. It is widely used in the treatment of dysuria and renal failure, cystitis and crystalluaria. Its anti-inflammatory property finds a use in the treatment of abscesses and cutaneous infections. It is also used in the treatment of dysentery and diarrhoea.\(^{30}\)

Antiviral activity

Methanol-water extract from rhizomes of *Bergenia ligulata* inhibited in vitro the replication of influenza virus in a dose dependent manner and did not show virucidal activity at effective concentration.\(^{49}\) Pretreatment of cells with *B. ligulata* extract was shown to be most effective to prevent cell destruction. The extract inhibited viral RNA synthesis and reduced viral peptide synthesis at 10 microg/ml. The principal chemical compound was condensed tannins in the extract.\(^{61,62}\)

Antibacterial activity

The antibacterial activity was tested using the disc diffusion method\(^{55}\) measured by 10, 25 and 50 mg/ml plant extract. The zone of inhibition was calculated by measuring the minimum dimension of the zone of no microbial growth around the well. Aqueous, 50% ethanolic and methanolic extracts of *B. ligulata* rhizomes were tested for their ability to inhibit the growth of *E. coli*, *B. subtilis*, and *S. aureus* at the dose levels of 10, 25 or 50 mg/ml for each extract. At a dose level of 50 mg/ml, the antibacterial effect was most significant. Incidentally, the antibacterial effect of the extracts at this level was comparable to ciprofloxacin (25 mg/ml). The results clearly suggest that *B. ligulata* possesses a strong antibacterial activity.\(^{52}\)

MEDICINAL ACTIVITY OF ROOT

Hepatoprotective activity

The ethanolic extracts of root of *Bergenia ligulata* were assessed for hepatoprotective activity in albino rats that was compared with standard drugs. Acute toxicity studies were carried out for ethanolic extract of *Bergenia ligulata* root on healthy Swiss albino mice of body weight 25- 35g by using Up and Down or Stair case method.\(^{53}\) Evaluation of the hepatoprotective activity was done by measuring the levels of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transminase (SGOT) serum alkaline phosphatase and total bilirubin levels.\(^{50}\) The ethanolic extract of the roots of *Bergenia ligulata* was found to produce significant activity.\(^{11}\)

Diuretic activity

The ethanolic extracts of root of *Bergenia ligulata* were assessed for diuretic activity in albino rats that was compared with standard drugs. For evaluation of the diuretic activity Lipschits method, was used.\(^{56-58}\) It was done by measuring the volume of urine collected at the end of 5 hrs and Na\(^+\), K\(^+\) and Cl\(^-\) concentration in urine. The ethanolic extract of the roots of *Bergenia ligulata* was found to produce significant activity.\(^{11}\)

The extracts of *Bergenia ligulata* root were studied in the presence of artificial reference urine (ARU) and human urine (HU) the growth behaviours of CHPD crystals grew within the rings. The addition of aqueous extract of *B. ligulata* to the calcium chloride in the supernatant solution modified the diffusion process and hence the periodic precipitation and the number of liesegang rings. The maximum length of the crystals was reduced due to inhibition produced by the addition of aqueous extract of *B. ligulata* the HU aqueous extract (AE) of *B. ligulata* contained a large number of salts and organic molecule. And their complex formation may have promoted the effect on growth of CHPD crystals .But when they are added separately to CaCl\(_2\) they inhibit the growth of crystals. This suggests that these solutions separately inhibit the growth of crystals in in–vivo condition. But mixing with HU (humane urine) changes their behaviour markedly. The diuretic nature of AE/B.ligulata seems to be important in the remedy rather than their inhibitive nature.\(^{59}\)

MEDICINAL ACTIVITY OF COMBINED PLANT PART (ROOT, RHIZOME AND LEAVES)

Antipyretic activity

The ethanolic (95%) extracted of roots, rhizomes and leaves and aqueous extract of whole plant of *Bergenia ligulata* Wall in yeast induced fever in albino rats of wistar strain were assessed for antipyretic activity.\(^{54}\) The yield of semisolid mass (w/w) was obtained as ethanol extract of roots (13.36%), ethanol extract of rhizomes (15.12%), ethanol extract of leaves (11.02%) and aqueous extract of...
whole plant (09.21%). Acute toxicity studies were carried out for all the extracts of *Bergenia ligulata* Wall on healthy swiss albino mice of body weight 25-35g by using Up and Down or Stair case method. The suspension of all the extracts of *Bergenia ligulata* Wall was prepared in 5% gum acacia and employed for assessment of antipyretic activity at the dose of (300 and 500mg/kg-body weight). The standard drug used was paracetamol (200mg/kg.p.o). Rectal temperature of experimental animals was recorded at a time interval of 1hr, 2hr, 3hr, 4hr and 5 hr after drug administration for evaluation of antipyretic activity. The ethanolic extract of roots and rhizomes of *Bergenia ligulata* Wall at a dose of 500mg/kg.p.o decreased the yeast induced fever in experimental animals.20

The ethanolic extracts of root of *Bergenia ligulata* were assessed for antipyretic activities in albino rats that were compared with standard drug. The assessment of Antipyretic activity was carried out using Brewer’s Yeast induced pyrexia method in wistar rats. Rectal temperature was recorded at a time interval of 0, 30 min, 1 hr, 2 hr and 3 hr after drug administration for evaluation of antipyretic activity the ethanolic extract of the roots of *Bergenia ligulata* was found to produce significant antipyretic activity.11

REFERENCES

35. Parajuli DP, Gyawali AR, Shrestha BM. Manual of important non- timber forest products in nepal. Training and Manpower

63. Mitra SK, Saxena E, Babu UV. Herbal composition for maintaining/caring the skin around the eye, methods of preparing the same and uses therefore. US patent 7, 2010;785,637
