
Int. J. Pharm. Sci. Rev. Res., 15(2), 2012; nᵒ 20, 102-107                                                                                        ISSN 0976 – 044X 

 

International Journal of Pharmaceutical Sciences Review and Research                                                   Page 102 
Available online at www.globalresearchonline.net 

 

                                                                                                                          
 

 
Subrata Sen*, Koushik Sarker  

*A. P. C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur, Orissa, India. 

 
  
Accepted on: 18-06-2012; Finalized on: 31-07-2012. 

ABSTRACT 

Several glutamic acid analogs were designed, synthesized and evaluated in vivo on EAC cells. With the ligand-based approach, it is 
necessary to develop a 2D QSAR model, which can beacon cue on further design to help invent most active molecule of the series. 
80 congeneric molecules were selected, with meaningful descriptor and justified by befitting statistical parameters. The principle of 
parsimony was applied. Nearly 120 descriptors from TSAR 3.3 and CHEM DRAW ULTRA 12.0 were generated and MLR was 
performed to develop the model using TSAR 3.3 and SIGMAPLOT 11.0. A significant r (0.862), r2 (0.743), r2CV (0.707) was obtained. 
The model was validated externally r2 (0.694). 

Keywords: 2D QSAR, MLR, Glutamic Acid, EAC, TSAR3.3. 

 
INTRODUCTION 

Until now several glutamic acid analogs as esters, amines, 
amides and hydrazides have been synthesized in our 
laboratory by bioisosteric replacement of metabolite 
structure of thalidomide and tested on EAC for anticancer 
activity. In the year 1964, an endeavor to correlate 
quantitatively biological activity and chemical structures 
were made.1 A few Physicochemical parameters, i.e. 
lipophilicity, expressed by log P or π values, electronic 
properties, expressed by σ, molar refractivity MR, steric 
properties, and/or parabolic lipophilicity terms were used 
in the correlations. Development in quantum chemical 
and geometrical parameters, connectivity values, 
electrotopological state parameters, and many others 
allowed drug designers to explicate SARs in a quantitative 
mode and to predict the activities of new analogs2, 3.  

To develop a significant QSAR model 80 congeneric 
molecule was selected, with meaningful descriptor and 
justified by befitting statistical parameters. The principle 
of parsimony was applied, i.e. results are approximately 
equal, the simplest model must be selected, and too 
many variables should not be tested and included in the 
final model.4 The descriptors from TSAR 3.3 and CHEM 
DRAW ULTRA 12.0 were generated and MLR was 
performed to develop the model using TSAR 3.3 and 
SIGMAPLOT 11.0. 

MATERIALS AND METHODS 

Data set for analysis 

The in vivo biological activity data reported as percentage 
inhibition was converted to log BA (biological activity) for 
inhibition of Ehrlich ascites carcinoma cell by a series of 
glutamic acid derivatives.  

As a rule, 66 compounds added as a TRAINING set 
(dependent variable) for the QSAR study along with 14 

compounds as TEST set, to test the predictive ability of 
the model generated.  

Structure preparation and descriptor calculation 

Three-dimensional structure of all molecules along with 
Partial charge was calculated using the Charge-2 CORINA 
3D package in TSAR 3.3, and the inhibitor geometries 
were optimized using its Cosmic Module. The utility of 
Charge-2 is depended on two fundamental chemical 
concepts: 

a) The inductive effect in saturated molecules 

b) Huckle molecular orbital calculations (HMO) for 
-systems. 

Molecular descriptors for the substituents were 
calculated, which vary in common points of the generic 
structure as shown in table 1.  

Several Topological, Connectivity, Shape indices, 
Hydrophobic and Thermodynamic descriptors were 
generated to describe our samples. With whole molecule 
and three substituents, altogether 120 descriptors 
(independent variables) were calculated. This gives a very 
large data set, which may increase the risk of over fitting 
the data. To circumvent this problem pruning of data was 
carried out which helped in reducing data redundancy 
that could lead to low Predictability of the model. 
Descriptors with the same values for all the compounds 
were discarded (due to zero variance).5 For further data 
reduction, a correlation matrix was generated to study 
the data pattern. Data was reduced by pair wise 
correlation.6 Among the highly inter-correlated 
descriptors, the one that had a high correlation with 
biological activity were retained and the other was 
discarded. Through iterative processes, eventually 26 
descriptors were chosen, which are non-correlated with 
each other.  
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Table 1: Data set for training compounds (R2= R3) 

Entry Number R1 R2 % Inhibition 
Observed 

logBA 
Predicted 

logBA Residual value 

X1 Benzene COOH  15.47 1.1895 1.20243 -0.01293 
X2 Benzene COOCH3  28.21 1.45054 1.47649 -0.02595 
X3 Benzene COOCH2CH3  37.83 1.57786 1.56026 0.0176 

X4 Benzene CONHNH2  31.71 1.50123 1.51685 -0.01562 

X5 Benzene CONHNHC6H5  34.602 1.53911 1.55296 -0.01385 

X6 Benzene CONHNH Cl
 

56.5 1.75208 1.61281 0.13927 

X7 Benzene CONHNH CH3
 

39.38 1.595 1.61565 -0.02065 

X8 Benzene CONHNH NO2
 

34.087 1.5326 1.6252 -0.0926 

X9 Benzene 
CONHNH

O2N  

36.69 1.56455 1.6422 -0.07765 

X10 4-Methoxy benzene COOH  57.18 1.70915 1.56503 0.14412 
X11 4-Methoxy benzene COOCH3  38.77 1.5885 1.65539 -0.06689 

X12 4-Methoxy benzene COOCH2CH3  36.62 1.56374 1.65452 -0.09078 

X13 4-Methoxy benzene CONHNHC6H5  45.76 1.66058 1.68412 -0.02354 

X14 4-Methoxy benzene CONHNH Cl
 

47.53 1.67702 1.58136 0.09566 

X15 4-Methoxy benzene CONHNH CH3
 

38.89 1.58993 1.59373 -0.0038 

X16 4-Methoxy benzene CONHNH NO2
 

51.98 1.71586 1.68993 0.02593 

X17 4-Methoxy benzene 
CONHNH

O2N  

46.06 1.6634 1.68993 -0.02653 

X18 3, 4-Dimethoxy benzene COOH  55.54 1.74466 1.69659 0.04807 
X19 3, 4-Dimethoxy benzene COOCH3  39.97 1.60178 1.66163 -0.05985 

X 20 3, 4-Dimethoxy benzene COOCH2CH3  49.59 1.69541 1.70205 -0.00664 

X21 3, 4-Dimethoxy benzene CONHNH2  34.45 1.5372 1.69193 -0.15473 

X22 3, 4-Dimethoxy benzene CONHNHC6H5  58.91 1.7702 1.62203 0.14817 

X23 3, 4-Dimethoxy benzene CONHNH Cl
 

46.65 1.6689 1.578 0.0909 

X24 3, 4-Dimethoxy benzene CONHNH NO2
 

27.62 1.4413 1.62586 -0.18456 

X25 3, 4-Dimethoxy benzene 
CONHNH

O2N  

46.51 1.66762 1.6395 0.02812 

X26 4-Ethoxy benzene COOH  57.33 1.75839 1.6217 0.13669 
X27 4-Ethoxy benzene COOCH3  50.51 1.7034 1.7285 -0.0251 

X28 4-Ethoxy benzene COOCH2CH3  55.36 1.7432 1.77359 -0.03039 

X29 4-Ethoxy benzene CONH2  38.82 1.5891 1.62659 -0.03749 

X30 4-Ethoxy benzene CONHCH3  42.32 1.6266 1.64573 -0.01913 

X31 4-Ethoxy benzene CONHCH2CH3  61.26 1.78721 1.69827 0.08894 
X32 4-Ethoxy benzene CONHCH2CH2CH3  46.15 1.66421 1.74615 -0.08194 

X33 4-Ethoxy benzene CONHCH(CH3)CH3  54.03 1.73265 1.74665 -0.014 

X34 4-Ethoxy benzene CONHCH2CH2CH2CH3  49.24 1.6924 1.73526 -0.04286 

X35 4-Ethoxy benzene CONHNH2  68.92 1.83837 1.7642 0.07417 
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X36 4-Ethoxy benzene CONHNHC6H5  45.06 1.65385 1.78621 -0.13236 

X37 4-Ethoxy benzene CONHNH Cl
 

68.54 1.836 1.76038 0.07562 

X38 4-Ethoxy benzene CONHNH CH3
 

42.25 1.6259 1.75393 -0.12803 

X39 4-Ethoxy benzene CONHNH NO2
 

49.07 1.6909 1.66681 0.02409 

X40 4-Ethoxy benzene 
CONHNH

O2N  
76.73 1.885 1.69353 0.19147 

B1 Pyridine-2yl COOH  60.16 1.77935 1.6692 0.11015 
B2 Pyridine-2yl COOCH3  62.7 1.7973 1.86319 -0.06589 
B3 Pyridine-2yl COOCH2CH3  72.41 1.8598 1.77552 0.08428 

B5 Pyridine-2yl CONH2  73.41 1.8658 1.7957 0.0701 

B6 Pyridine-2yl CONHCH3  76.29 1.8825 1.85008 0.03242 

B8 Pyridine-2yl CONHCH2CH2CH3  75.45 1.8777 1.81493 0.06277 

B11 Pyridine-2yl CONHC5H11  59.08 1.7715 1.82857 -0.05707 

B12 Pyridine-2yl (n) 67.77 1.83106 1.82135 0.00971 

B4 Pyridine-2yl CONHNH2  80.14 1.9039 1.81256 0.09134 
B14 Pyridine-2yl CONHNHC6H5  69.05 1.8392 1.74703 0.09217 

B15 Pyridine-2yl 
CONHNH

O2N  
68.83 1.8378 1.8536 -0.0158 

B16 Pyridine-2yl CONHNH NO2
 

83.46 1.9215 1.91017 0.01133 

X53 Quinoline-8-yl COOH  70.194 1.8463 1.88411 -0.03781 
X54 Quinoline-8-yl COOCH3  84.27 1.9257 1.86651 0.05919 
X55 Quinoline-8-yl COOCH2CH3  87.74 1.9432 1.86661 0.07659 
X56 Quinoline-8-yl CONHCH2CH2CH3  82.18 1.9148 1.90512 0.00968 

X57 Quinoline-8-yl CONHCH(CH3)CH3  72.84 1.8624 1.9087 -0.0463 

X58 Quinoline-8-yl CONHCH2CH2CH2CH3  59.57 1.7751 1.84067 -0.06557 
X59 Quinoline-8-yl CONHC5H11  86.07 1.9349 1.87698 0.05792 

X60 Quinoline-8-yl CONHC6H13 (n) 85.42 1.9316 1.98152 -0.04992 

X61 Quinoline-8-yl CONHC6H11 (Cyclo) 95.16 1.9785 1.98206 -0.00356 

X62 Quinoline-8-yl CONHNH2  90.92 1.9587 1.97578 -0.01708 
C5 Quinoline-8-yl CONHCH2CH2CH3  90.77 1.95798 1.99087 -0.03289 

C2 Furan-2-yl COOCH3  66.04 1.81981 1.79092 0.02889 
C3 Furan-2-yl CONH2  25.85 1.41252 1.59101 -0.17849 

C4 Furan-2-yl CONHCH2CH3  25.77 1.41123 1.57833 -0.1671 
 

Table 2: Data for test set compounds 

Entry No. R1 R2 
log BA 

ESTIMATED 
log BA 

OBSERVED Residual 

B7 Pyridine-2-yl CONHCH2CH3  1.7946 1.7964 -0.0018 

B9 Pyridine-2-yl CONHCH(CH3)CH3  1.7807 1.8344 -0.0237 

B10 Pyridine-2-yl CONHCH2CH2CH2CH3  1.8897 1.8466 0.0431 

B13 Pyridine-2-yl cyclo 1.9699 1.8854 0.0845 

B17 Pyridine-2-yl CONHNH Cl
 

1.8632 1.8289 0.0343 

X67 Benzene CONHCH2CH3  1.8545 1.8847 -0.0302 

X68 Benzene CONHC6H11  1.9661 1.5817 0.3844 

X69 4-Methoxy benzene CONHNH2  1.9258 1.8897 0.0361 

X70 4-Methoxy benzene CONHCH3  1.6585 1.13 0.5285 

X71 Benzene CONHCH3  1.8638 1.8085 0.0553 

X72 4-methyl benzene COOCH3  1.686 1.6142 0.0718 

X73 4-methyl benzene COOCH2CH3  1.76015 1.6924 0.06775 

C1 Furan-2-yl COOH  0.7135 0.8876 -0.1741 

C6 Furan-2-yl CONHCH2CH2CH2CH3  1.7972 1.8345 -0.0373 

CONHC6H11
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RESULTS AND DISCUSSION 

Model development and statistical analysis 

The relationship between structural parameters and 
biological activities were quantified by the multiple linear 
regressions implemented in TSAR 3.3 and SIGMA PLOT 
11.0 by Systat Software, Inc. Sigma Plot for Windows. 
MLR is only useful when there are more observations 
than variables. When the converse is true, the model 
developed by MLR becomes statistically unreliable. TSAR 
uses an automated variable selection process through a 
two-way stepping algorithm to select variables for the 
regression equation. At, each step, partial F-value is 
calculated for each variable, as an estimate of their 
potential contribution to the model.  

The overall F-statistics for a model is expressed as  

F= Explained Mean Square/Residual Mean Square.  

Partial F values are an estimation of the sequential 
contribution towards the F statistics for the final model. 
In forward stepping process, once a variable has entered 
the model, it cannot leave. Values for F-to-enter and F-to-
leave were set to 2 and 0 respectively, which indicates 
that forward stepping was applied. At each step, the 
partial F values of all variables outside the model are 
calculated. If any variable has a value greater than F to 
Enter, the variable with the highest partial F value is 
added to the model. The process is continued until no 
more variables qualify to enter the model, or the required 
number of steps has been reached. The cross-validation 
analysis was performed using the leave-one-out random 
selection (LOO) method leaving out one row randomly 
over two random trials. The Correlation limit was set to 
0.9. The cross-validated r2 and conventional r2 that 
resulted in the lowest error of prediction were chosen.  

Predictive correlation coefficient (r2pred):  The predictive 
capability of the 2D-QSAR models was determined from a 
set of 14 compounds that were not included during 
model development. Structure generation, optimization, 
charge derivation, and all other steps of test sets were 
done in the same way as that of the training set 
compounds as described above, and their activities were 
calculated using the model produced by the training set. 

The predictive correlation (r2 pred), based on the test set 
molecules, was computed using: 

r2 pred = (SD-PRESS)/SD  

Where, SD is the sum of squared deviations between 
biological activities of the test set and mean activities of 
the training set molecules. 

The predictive residual sum of squares (PRESS) is the sum 
of squared deviations between calculated and 
experimental activity values for every molecule in the test 
set. The dataset was randomly partitioned into a training 
set of 66 and a test set of 14 compounds with bias given 
to chemical diversity in both the training and test set 
molecules. Despite the ambiguity of drug-receptor 

interaction, a model was developed which is statistically 
significant. Multiple regression analysis was carried out to 
get the best-fit equation. Six descriptors were chosen by 
stepwise regression analysis. 

Multiple linear regressions  

log BA = (±0.113) 0.978 - 0.280 (±0.0716 * STRETCH-
BEND) + 0.496 (±0.0743 * OVALITY) + 0.0253 (±0.00401* 
LIPOLE X COMPONENT WM) + 0.0560 (±0.0221* LIPOLE X 
COMP. SUB1.) + 0.00533 (±0.00248* LIPOLE Y COMP. 
WM) + 0.0552 (±0.00925* LIPOLE Y COMP. SUB.1) + 
0.0304 (±0.00833 * BOND LIPOLE SUB1.) - 
0.00416(±0.00124 * DIPOLE/DIPOLE). 

This represents the final possible best-fitting linear 
equation between the dependent variable log BA, and the 
independent variables. 

N = 66; r = 0.862; r2 = 0.743; r2 (CV) /q2 = 0.707: Standard 
Error of Estimate (s) = 0.087  

r: Multiple regression correlation coefficients (0.862) are 
the square root of r2.   

r2: The fraction of the total variance of log BA that is 
explained by the regression equation (0.743). The closer 
the value to 1.0, the better the regression explains log BA.  

r2= ESS/TSS   ESS= explained sum of square of log BA and 
TSS = total sum of square. 

Cross validation r2 (CV): It is the cross validated 
equivalent of r2. It is the key measure of the predictive 
power of the model.  

 
‘s’ signifies the standard error of the regression model 
(0.087). For a model with good predictive power, this is 
an estimate of how accurately the model will predict the 
test set of compounds. The ‘s’ value is only a valid 
estimate of the prediction error for models with good 
predictive power. 

Analysis of variance 
 DF SS MS F 

Regression 8 1.261 0.158 20.620 
Residual 57 0.436 0.00765  
Total 65 1.697 0.0261  

Predictive Sum of Squares: 0.500854;  F probability: 3.83355 e-015 

Jack-knife estimate of standard error gives an idea about 
standard error on each regression coefficient derived 
from Jack-knife procedure on the final regression model. 

Covariance estimate of standard error gives an estimate 
of the standard on each regression coefficient derived 
from the covariance matrix. The classical method of 
deriving standard error where cross validation is not 
involved.   

t-values measure the significance of each variable that is 
included in the final model, in a manner analogous to the 
F statistics. 
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t-probability values are a statistical significance for t-
values. As with the F statistics, a t-probability of 0.05 
indicates that a variable is significant at the 95% level. In 

this stepwise process, these t-values can be used only as a 
general indicator of variable significance. 

 

Table 3: Confidence results 
Variable Coefficient Jackknife   SE Covariance SE t-value t- probability VIF SSIncr SSMarg 

STRETCH-BEND -0.280 0.0347587 0.0716155 -3.90487 0.000252111 1.341 0.121 0.117 
OVALITY 0.496 0.0493592 0.0743351 6.67014 1.12582e-008 1.127 0.445 0.340 

LIPOLE XCOMPONENT WM 0.0253 0.00264916 0.00401429 6.29834 4.64764e-008 1.528 0.0861 0.303 
LIPOLE X COMP. SUB1 0.0560 0.00533854 0.022093 2.53392 0.0140529 1.861 0.0389 0.0491 
LIPOLE Y COMP. WM 0.00533 0.000926729 0.00248417 2.14459 0.0362621 1.403 0.0555 0.0352 
LIPOLE Y COMP. SUB1 0.0552 0.00496196 0.00924944 5.96968 1.61256e-007 1.185 0.290 0.272 

BOND LIPOLE SUB1 0.0304 0.000539591 0.00833041 3.65096 0.000568856 2.474 0.140 0.102 
DIPOLE/DIPOLE -0.00416 9.77685e-005 0.00124056 -3.35136 0.00143235 1.275 0.0859 0.0859 

CONSTANT 0.978 0.0797141       
 

The cross-validated correlation coefficient defines the 
goodness of prediction i.e. how reliable predicted values 
for untested compounds are likely to be, whereas the 
non-cross-validated conventional correlation coefficient 
indicates the goodness of fit of a QSAR model. The F-test 
value stands for the degree of statistical confidence. As 
evident from the table, a cross-validated correlation 
coefficient of 0.707 was obtained, using the leave-one-
out cross-validation procedure.  

Table 4: Statistical parameters obtained from the best 
model 

No. of molecules in Training set 66 
No. of molecules in Test set 14 
Correlation co-efficient (r) 0.862 

r2 (Training Set) 0.743 
r2pred (Test Set) 0.6938 

r2 cv/ q2 0.707 
F value 18.668 
s value 0.095 

Predictive sum of square (training) 0.4885 
Residual sum of square(training) 0.522 
Predictive sum of square (test) 0.06478 
Residual sum of square(test) 0.390067 

Generally, the external predictive capability of a QSAR 
model is validated using test sets. A predictive correlation 
coefficient of 0.6938 was obtained from the study, 
indicating the usefulness of the developed QSAR in 
predicting activities of molecules not included during its 
development. Another way to evaluate the significance of 
the developed model is to test it for statistical stability. 
The standard error of estimate and a predictive residual 
sum of squares may be employed. Low values of the 
standard error of estimate (0.087) and of PRESS for the 
training (0.4885) and test sets (0.06478) further add to 
the statistical significance of the developed models. The 
experimental and calculated activity is shown in table 1 
and 2. Fig.1 and 2 show plots of experimental vs. 
calculated percentage inhibition values for both the 
training and test set molecules respectively.  

These two plots are important to observe graphically, the 
predictive capability of QSARs. The fact that the training 
set molecules are on or near the best-fit line, as shown in 
Fig. 2, further add to the usefulness of the developed 

QSAR. Table 5 shows the descriptors included in the final 
QSAR model and their statistical significance.  

 
Figure 1: Correlation between actual and predicted log BA 
of training set 

 
Figure 2: Correlation between actual and predicted log BA 
of test set 

PRINCIPLE OF PARSIMONY (Occam’s razor): 

1. The number of compounds per variable in the 
equation should be at least five to six to avoid chance 
correlation. [At least n> 36, we have n= 66] 
2. The equation should be rejected if the number of 
variables in the regression equation is unreasonably high 
(i.e. the model is very complex). 
3. The standard deviation (standard error of estimate, s) 
should not be much greater than the mean error of the 
biological data. [Standard Error of Estimate = 0.087]. The 
mean error of log BA = 0.0198. 
4. RMSE=0.078 for Training set. RMSE= 0.1864 for Test 
set. 

RMSE summarizes the overall error of the model i.e. the 
precession of the QSAR and can thus be applied to 
predictions (i.e. RMSEP).7  
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Table 5:  Descriptors included in the final QSAR model and their correlation with each other 
 Log BA Stretch-Bend Dipole/Dipole Ovality Lipole X comp 

WM 
Lipole X 

comp Sub.1 
Lipole Y comp 

WM Lipole Y sub 1 Bond Lipole 
Sub1. 

Log BA 1 -0.0454 -0.319256 0.505269 0.250964 0.0767976 0.0202034 0.330975 0.114815 
Stretch- Bend -0.0454 1 0.358589 0.0244056 0.0924878 0.0523722 0.27964 -0.0945317 0.128317 
Dipole/Dipole -0.319256 0.358589 1 -0.0234866 0.247106 0.0752226 -0.0368692 -0.023277 -0.195789 

Ovality 0.505269 0.0244056 -0.0234866 1 0.104807 -0.218894 -0.102133 -0.046386 0.168608 
Lipole X comp 

WM 0.250964 0.0924878 0.247106 0.104807 1 0.254964 -0.14614 -0.246179 -0.488708 

Lipole X comp 
Sub.1 0.0767976 0.0523722 0.0752226 -0.218894 0.254964 1 0.0576918 0.157284 -0.59117 

Lipole Y comp 
WM 0.0202034 0.27964 -0.0368692 -0.102133 -0.14614 0.0576918 1 -0.245849 0.300144 

Lipole Y sub 1 0.330975 -0.0945317 -0.023277 -0.046386 -0.246179 0.157284 -0.245849 1 -0.0462334 
Bond Lipole 

Sub1. 0.114815 0.128317 -0.195789 0.168608 -0.488708 0.300144 0.300144 -0.0462334 1 

 
CONCLUSION 

The QSAR analysis using 80 glutamamide derivatives was 
successfully carried out to build a statistically significant 
model possessing a good correlative and predictive 
capability of inhibition of EAC cell. The 2D-QSAR model 
was validated by standard statistical means to check how 
it reproduces and explains the differences in the 
experimentally known activity data. Detailed QSAR model 
investigation revealed that the biological activity is 
explained by liable for both whole molecule and 
substituent1 along the X and Y-axis, which explains the 
lipophilic distribution of the inhibitors, except lipole Y 
comp WM, as the coefficient is insignificant. Ovality which 
explains as O= (A/4π) (3V/4π).2/3 This property is an 
indicator of how close is the molecular geometry of a 
sphere, a cylinder or a disk. If O=1, it is a perfect sphere, if 
O>1.0 it is a cylinder and if O<1.0 it is closer to a disk. 
Although it is directly related to the molecular geometry 
(PM3) it also depends on the single-point level of 
calculation of the Wave function (abinitio HF/3-21G), 
since the density derived from it is used to compute the 
molecular volume employed in the ovality formula.8 This 
provided an insight into how modulation of the steric 
bulkiness and polarity of the substituents could be useful 
to optimize the inhibitory effect and hence improve the 
observed biological activity. The electronic parameter 
(stretch-bend) Stretch-bend term represents the energy 
required to stretch the two bonds involved in a bond 
angle when that bond angle is severely compressed. 

Stretch-bend cross terms are used when a coupling 
occurs between bond stretching and angle bending. For 
example, when an angle is compressed, the MM2 force 
field uses the Stretch-bend force constants to lengthen 
the bonds from the central atom in the angle to the other 
two atoms in the angle. It provides a clue about its effect 
on changing the values. Thermodynamic parameter 
(dipole-dipole) cannot explain much as the coefficient is 

statistically insignificant. This analysis could help rational 
design of potential drug candidates with enhanced 
inhibitor potency. 
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