Research Article

Docking, Synthesis and Anticancer Activity of Metallo Peptides Using Solution Phase Peptide Technique

Himaja Malipeddi, Ranjitha Jambulingam*

Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore-14, Tamilnadu, India. *Chemistry Division, School of Advanced Sciences, VIT University, Vellore-14, Tamilnadu, India. *Corresponding author's E-mail: jranji16@yahoo.co.in

Accepted on: 26-04-2013; Finalized on: 31-07-2013.

ABSTRACT

The present work deals with synthesis and characterization of the ligand dipeptide and their complexes with Ni (II) and Cu (II) ions. The synthesized dipeptide complexes have been characterized by UV-Visible, FTIR, ¹H & ¹³C NMR and Mass spectral analysis. Molecular docking studies were carried out for the Metal incorporated Linear peptides and the results showed greater affinity for HPV18-2IOI receptor (HeLa cancer cell line). Metal incorporated linear peptides [5(a-d) & 6(a-d)] showed potent anticancer activity against HeLa cancer cells.

Keywords: Synthesis, Ni (II) and Cu (II) complexes, docking, solution phase peptide synthesis, anticancer activity.

INTRODUCTION

etal ion containing complexes plays an important role in the biological system of the living organisms¹. The main medicinal uses and application of metals and metal containing complexes are of increasing in clinical and commercial importance². In general metal ion containing compounds possess a variety of biological activities like antibacterial and antifungal³, antithrombotic⁴, antiulcerous⁵ and anticancer activities⁶. An extensive literature survey was done in the synthesis and biological evaluation of metal incorporated linear and cyclic peptide compounds. Survey revealed that only a few articles were available for metal incorporated peptides synthesis by solid phase peptide technique⁷. The disadvantages of solid phase technique were (i) the cost of solid support material is expensive (ii) protection and deprotection of solid resin is very difficult (iii) stability of the complexes is weak. By keeping in view of these observations, we have tried the synthesis of metal incorporated linear peptides using solution phase technique.

MATERIALS AND METHODS

IR spectra were recorded on Thermo Nicolet 330 FTIR spectrophotometer (Thermonicolet, USA) using a thin film supported on KBr pellets. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AC NMR spectrometer (300 MHz), (Bruker, USA) using CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Mass spectra were recorded in Joel Sax 102/DA-6000 mass spectrometer (Joel, Tokyo, Japan) operating at 70 eV using fast atom bombardment technique. All amino acids and other chemicals were obtained from Spectrochem Private Limited (Mumbai, India).

Preparation of amino acid methyl ester hydrochlorides

Thionyl chloride (1.4ml, 20mmol) in methanol (100ml) added slowly at 0°C. To the resulting solution, amino acid

(20mmol) was added and refluxed for about 8-10 hours. The excess solvent was evaporated to get the amino acid methyl ester hydrochloride which was triturated with diethyl ether at 0°C until excess dimethyl sulphite was removed. The resulting solid was recrystallized from methanol and diethyl ether at 0°C. Using the above procedure, the following amino acid methyl ester hydrochlorides were prepared - (i) Glycine OMe.HCI, (ii) Tyrosine OMe.HCI, (iii) Leucine OMe.HCI, (iv) Alanine OMe.HCI. The physical data of the synthesized amino acid methyl esters are illustrated in the Table 1.

Preparation of Boc-amino Acids

The amino acid (20mmol) was dissolved in 1N NaOH (20ml) and isopropanol (20ml). Tert-butyloxy carbonyl anhydride (Boc)₂O (26mmol, 6ml) in isopropanol (10ml) was added followed by 1N NaOH (20ml) to the resulting solution. The solution was stirred at room temperature for 2 hours, washed with light petroleum ether $(40-60^{\circ}C)$ (20ml), acidified to pH 3.0 with 2N H_2SO_4 and finally extracted with chloroform (3 x 20ml). The organic layer was dried over anhydrous sodium sulphate and evaporated under reduced pressure to get Boc-amino acids. The crude product was recrystallized using chloroform and petroleum ether as solvents. Using the above method the following Boc-amino acids were prepared - (i) Boc-glycine, (ii) Boc-alanine. The physical parameters of the synthesized Boc-amino acids are mentioned in the Table 2.

Preparation of the Dipeptides⁸

Amino acid methyl ester hydrochloride (10mmol) was dissolved in chloroform (20ml). To this, N-methylmorpholine (1.3ml) was added at 0° C and the reaction mixture was stirred for 15 minutes. Boc-amino acid (10mmol) in CHCl₃ (20ml) and TBTU (10mmol) were added with stirring. After 30 minutes, the reaction mixture was filtered. The filtrate was washed with 5%

NaHCO₃ (20ml), 5% HCl (20ml) and distilled H_2O (20ml). The organic layer was dried over anhydrous Na_2SO_4 , filtered and evaporated in a vacuum. The residue was purified by recrystallization from CHCl₃. The ester and Boc-group were deprotected using standard procedure

(*A&B*).The following dipeptides was prepared using the above mentioned protocol: (i) Glycyl-glycine; (ii) Glycyl-tyrosine; (iii) Alanyl-leucine; (iv) Alanyl-alanine. The physical data of the synthesized dipeptides are represented in the Table 3.

Table 1: Physical Data o	f the synthesized a	mino acid methyl esters
--------------------------	---------------------	-------------------------

S.No	Amino acid methyl ester	Molecular Weight	Molecular Formula	M.P (°C) - (Lit. M.P)	% Yield
1	Glycine methyl ester hydrochloride	125.55	C ₃ H ₈ CINO ₂	175 (173-177)	74.98
2	Tyrosine methyl ester hydrochloride	231.07	C ₁₀ H ₁₃ NO ₃ HCI	187 (185-191)	97.76
3	Leucine methyl ester hydrochloride	181.66	C ₇ H ₁₅ NO ₂ HCI	151 (151-153)	74.80
4	Alanine methyl ester hydrochloride	139.58	C ₄ H ₉ NO ₂ HCI	110 (109-111)	77.82

S.No	Boc-amino acids	Molecular Weight	Molecular Formula	M.P (°C) – (Lit. M.P)	% Yield
1	Boc-Glycine	175.18	$C_7H_{13}NO_4$	87 - (86-89)	81.75
2	Boc-Alanine	189.21	$C_8H_{15}NO_4$	81 - (79-83)	88.90

Table 2. Db	iciaal Data	of the ex	intheologia	dinantidaa
Table 3: Phy	Sical Data	or the sy	ynnesizeu	upepudes

Boc-dipeptide- OMe	Physical state	Molecular formula	Molecular weight	% yield
Boc-Gly-Gly-OMe	Colourless semisolid mass	$C_{10}H_{18}N_2O_5$	246.12	83.23
Boc-Gly-Tyr-OMe	Pale yellow semisolid mass	$C_{17}H_{24}N_2O_6$	352.16	78.72
Boc-Ala-Leu-OMe	Colourless semisolid mass	$C_{15}H_{28}N_2O_5$	316.20	81.02
Boc-Ala-Ala-OMe	Colourless Semisolid mass	$C_{12}H_{22}N_2O_5$	274.15	79.14

Deprotection of ester group: To a solution of the protected peptide (1mmol) in THF: H_2O (1:1) (36ml), LiOH (1.5mmol) was added at 0°C. The mixture was stirred for about 1hour at room temperature and then acidified to pH 3.5 with 1N H_2SO_4 . The aqueous layer was extracted with Et_2O (3 x 15ml). The combined organic extracts were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure.

Deprotection of amino group: The protected peptide (1mmol) was dissolved in $CHCl_3$ (15ml) and treated with CF_3COOH (2mmol, 0.228gms). The solution was stirred at room temperature for about 1hour, washed with saturated NaHCO₃ (5ml). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The product was purified by recrystallization from CHCl₃ and petroleum ether.

Preparation of the metal complexes

Complexes of Ni(II) and Cu(II) ions with dipeptides were prepared by mixing ethanolic solutions (40mL) of 0.01mmol of the synthesized ligand (dipeptides) with an ethanolic solution (40mL) of 0.01mmol of NiCl₂.6H₂O and CuCl₂.2H₂O respectively, and a few drops of sodium bicarbonate solution were added to adjust the pH-8.5 until the complexes gets isolated. The reaction mixtures were refluxed for three hours and then cooled & filtered by suction process. The completion of the reaction was monitored by TLC. The metal complexes were dried in desiccators over anhydrous calcium chloride under vacuum. The following metallopeptides were prepared using the above mentioned protocol: *Cu(II)-glycyl-glycine*, *Ni(II)-glycyl-glycine*, *Cu(II)-glycyl-tyrosine*, *Ni(II)-glycyltyrosine*, *Cu(II)-alanyl-leucine*, *Ni(II)-alanyl-leucine*, *Cu(II)alanyl-alanine*, *Ni(II)-alanyl-alanine*.

Spectral Data:

Copper(II)-glycyl-glycine **5(a)**: Brown solid, Molecular Formula: C₄H₆CuN₂O₃; Molecular weight: 192.97; FTIR (υ, KBr) cm⁻¹: 538.18 (Cu-N); 642.70 (Cu-O).¹H NMR (500 MHz, D₂O): δ 4.41 (s, 2H, -CH₂ of Gly), 3.54 (s, 2H, -CH₂). ¹³C NMR (125 MHz, D₂O): δ 170.8, 168.9 (>C=O of Gly), 38.2, 40.6 (-CH₂ of Gly). HRMS (EI): 192.9701 (M+).

Nickel(II)-glycyl-glycine **6(a)**: Pale green solid, Molecular Formula: C₄H₆NiN₂O₃; Molecular weight: 187.97; FTIR (υ, KBr) cm⁻¹: 541.23 (Ni-N); 636.15 (Ni-O).¹H NMR (400 MHz, DMSO-d⁶): δ 4.40 (s, 2H, -CH₂ of Gly), 3.52 (s, 2H, -CH₂), 9.48 (broad, 1H, NH), 5.59 (s, 1H, -NH); HRMS (EI): 187.1024 (M+).

Copper(II)-glycyl-tyrosine **5(b)**: Brown solid, Molecular Formula: $C_{11}H_{12}CuN_2O_4$; Molecular weight: 299.01; FTIR (u, KBr) cm⁻¹: 536.04 (Cu-N); 646.08 (Cu-O).¹H NMR (400

MHz, D₂O): δ 7.02 (d, 2H, Ar-H of Tyr), 6.68 (d, 2H, Ar-H of Tyr), 4.43 (s, 2H, -CH₂ of Gly), 3.95 (t, -1H, -CH of Tyr), 3.19 (d, 2H, -CH₂ of Tyr). ¹³C NMR (125 MHz, D₂O): δ 177.9, 166.17 (>C=O of Gly and Tyr), 131.6-115.3 (Ar-C of Tyr), 56.7 (-CH of Tyr), 36.6, 40.3 (-CH₂ of Gly). HRMS (EI): 299.1802 (M+).

Nickel (II)-glycyl-tyrosine **6(b)**: Pale green solid, Molecular Formula: C₁₁H₁₂NiN₂O₄; Molecular weight: 294.02; FTIR (υ, KBr) cm⁻¹: 536.14 (Ni-N); 644.51 (Ni-O). ¹H NMR (400 MHz, D₂O): δ 7.03 (d, 2H, Ar-H of Tyr), 6.69 (d, 2H, Ar-H of Tyr), 4.42 (s, 2H, -CH₂ of Gly), 3.96 (t, -1H, -CH of Tyr), 3.17 (d, 2H, -CH₂ of Tyr). HRMS (EI): 294.1923 (M+).

Copper(II)-alanyl-leucine **5(c)**: Brown solid, Molecular Formula: $C_9H_{16}CuN_2O_3$; Molecular weight: 263.05; FTIR (u, KBr) cm⁻¹: 539.08 (Cu-N); 643.21 (Cu-O).¹H NMR (400 MHz, D₂O): δ 4.62 (m, 1H, -CH of Ala), 3.55 (t, 1H, -CH of Leu), 2.47 (m, 1H, -CH of Leu); 2.12 (d, -CH₂ of Leu); 1.01 (d, -CH₃ of Leu), 0.96 (d, -CH₃ of Leu). HRMS (EI): 263.6752 (M+).

Nickel(II)-alanyl-leucine **6(c)**: Pale green solid, Molecular Formula: C₉H₁₆NiN₂O₃; Molecular weight: 258.05; FTIR (υ, KBr) cm⁻¹: 539.06 (Ni-N); 644.31 (Ni-O).¹H NMR (400 MHz, D₂O): δ 4.58 (m, 1H, -CH of Ala), 3.51 (t, 1H, -CH of Leu), 2.46 (m, 1H, -CH of Leu); 2.11 (d, -CH₂ of Leu); 1.04 (d, -CH₃ of Leu), 0.94 (d, -CH₃ of Ala). HRMS (EI): 258.9120 (M+).

Copper(II)-alanyl-alanine **5(d)**: Brown Solid, Molecular Formula: $C_6H_{10}CuN_2O_3$; Molecular weight: 221.07; FTIR (KBr) cm⁻¹: 527.04 (Cu-N); 642.70 (Cu-O).¹H NMR (400 MHz, D₂O): δ 3.92 (s, 1H, -CH of Ala), 3.62 (s, 1H, -CH of Ala), 1.09 (d, 6H,-CH₃ of Ala). HRMS (EI): 221.9701 (M+).

Nickel(II)-alanyl-alanine **6(d):** Brown Solid, Molecular Formula: $C_6H_{10}NiN_2O_3$; Molecular weight: 216.35; FTIR (υ, KBr) cm⁻¹: 537.08 (Ni-N); 643.09 (Ni-O).¹H NMR (400 MHz, D₂O): δ 3.94 (s, 1H, -CH of Ala), 3.63 (s, 1H, -CH of Ala), 1.08 (d, 6H,-CH₃ of Ala). HRMS (EI): 216.1401 (M+).

Molecular Docking

We used the following Bioinformatics tools; biological databases like PDB (Protein Data bank) 9, 10 Swiss-PDB Viewer Version¹¹ 3.7 and docking software like Hex Version¹² 5.1 ACD ChemSketch (ACD/Labs, www.acdlabs.com). The Protein Data Bank (PDB) is the single worldwide archive of structural data of biological molecules, established in Brookhaven National Laboraties¹³. Computer aided drug design methods are heavily dependent on Bioinformatics tools, applications and databases¹⁴. The structure of 2IOI (HPV - human papillomavirus) receptor molecule was retrieved from protein data bank (PDB Code: 2IOI).

Using ChemSketch the structure of the metallopeptides was sketched. The docking analyses of the metallopeptides with 2IOI were carried by HEX docking software. Docking allows the scientist to virtually screen a database of the compounds and predict the strongest binders based on the various scoring functions. It explores ways in which two molecules, such as ligand and 2IOI receptor fit together and dock to each other. The Cu (II) and Ni (II) incorporated linear peptides binding to a 2IOI receptor, inhibit its function, and thus act as an anticancer drug. The collection of drug and receptor complex was identified via docking and their relative stabilities were evaluated using molecular dynamics and their binding affinities, using free energy simulations. Based on the total energy values the anticancer activity of the metallopeptides was identified.

Anticancer activity

[3-(4, 5-dimethylthiazole-2-yl)-2,5diphenyl MTT tetrazoliumbromide] Assay^{15,16} - (HeLa cell line) were obtained from ATCC and maintained in DMEM (Hi-Media Laboratories Pvt. Ltd, Mumbai, India) supplemented with 10% heat-inactivated FBS (v/v), streptomycin (100²g/ml) and penicillin (100µg/ml). The cell line was maintained at 37°C with 5% carbon dioxide in CO₂ incubator. The MTT cell proliferation assay was used to evaluate the anticancer activity of the Cu (II) and Ni (II) incorporated linear peptides using the Cell Quantification MTT cell viability assay kit (Bioassay Systems). The optical density was measured at 570nm for each well on the absorbance plate reader. Trypan blue dye exclusion assay was also used to count the number of viable and non-viable HeLa cancer cells in the culture medium after drug treatment. Treatment with 5-FU in the same concentration served as positive control.

RESULTS AND DISCUSSION

The metal complexes were synthesized by reaction of the ligand (dipeptide) with the metal ions in 1:2 molar ratios in ethanolic (or) water medium as shown in the reaction **scheme-I**. The ligand behaves as bidentate coordinate through oxygen and nitrogen donor atoms. Infrared spectrum of ligand (glycyl-tyrosine) shows several bands at 3489.22, 3392.65 and 1690.32 cm⁻¹ (Figure 1), due to the presence of >OH, NH₂ and >C=O respectively. The infrared spectral data of Cu (II)-glycyl-tyrosine complex showed the disappearance of the band due to the coordination of the NH₂ with the central metal ion. The band at 1690.32 cm⁻¹ which attributed to the >C=O in free ligand is shifted to lower frequency 1610.01 cm⁻¹ in the spectra of the complexes.

Figure 1: FTIR Spectrum of Copper (II)-glycyl-tyrosine (5b) and glycyl-tyrosine (4b)

Similarly, the -OH band in the free ligand disappeared in the spectra of the complexes due to the coordination with the central metal ion. New bands at 543.43 and 669.69 cm⁻¹ endorsed to the existing of (Cu-N) and (Cu-O) vibrations. The appearance of these vibrations which are not present in the free ligand indicates the involvement of nitrogen and oxygen atoms in chelation. The electronic absorption spectra of the ligand displayed a band at 347nm which is due to the phenyl ring of tyrosine unit. Due to d-d and charge transfer transitions, the electronic spectrum of Cu (II) complex showed two bands at 583 and 396nm respectively. The electronic spectral data of the metallopeptides has shown in the table 4. Table 4: Electronic spectral data of metallopeptides

Metal complexes	$D \rightarrow d$ transition	$CT \rightarrow M$
Cu(II)-glycyl-glycine (5a)	539 (0.392)	352 (0.920)
Cu(II)-glycyl-tyrosine (5b)	583 (0.594)	347(0.126)
Cu(II)- alanyl-leucine (5c)	567 (0.782)	321 (0.391)
Cu(II)-alanyl-alanine (5d)	549(0.921)	338 (0.673)
Ni(II)-glycyl- glycine (6a)	521 (0.109)	399 (0.916)
Ni(II)-glycyl-tyrosine (6b)	543 (0.456)	376 (0.223)
Ni(II)- alanyl-leucine (6c)	507 (0.189)	342 (0.092)
Ni(II)- alanyl-alanine (6d)	496 (0.789)	331 (0.499)

The ¹H NMR spectra of glycyl-tyrosine showed two distinct doublets at [δ , 2H, d, 7.01-6.99; 2H, d, 6.65-6.64] represented phenyl ring of tyrosine. A doublet signal at [δ , 2H, d, 2.73-2.78; -CH₂ of tyrosine] represented -CH₂ protons, one triplet at (δ , 4.41-4.43, 1H, t) as one methine proton and one doublet signal at (δ , 2H, d, 2.93-2.98; -CH₂ of glycine) indicated -CH₂ protons. The free hydroxyl group of carboxylic acid showed a sharp singlet peak at 12.98 (δ 1H, s, -OH). The proton NMR signals clearly confirmed the structure of metal free glycyl-tyrosine compound. After copper metal incorporation into the structure of the glycyl-tyrosine compound (Figure 4), free -NH₂ and -OH group signals were disappeared in the proton NMR spectrum due to the coordination with the

central metal ion. From mass spectrum, the molecular formula of the copper (II)-glycyl-tyrosine was elucidated based on their molecular ion peak M⁺ [299.0177]. Further confirmation of the structure [Cu(II)-glycyl-tyrosine] of the complex was made by ICP-OES spectral analysis as shown in the table 5.

Docking studies have been carried out using Hex software tool. The designed metal incorporated linear peptides were docked with different target cancer receptors collected from the protein database bank, out of all receptors HPV18-2IOI receptor showed good binding interaction with the (ligand) Metallopeptides. The docking results were shown in table 6.

Table 5: ICP-OES spectral data of metallopeptides 5(a-d)& 6(a-d)

Metal complexes	Analytical λ max	ICP Conc. mg/L
Cu(II)-glycyl-glycine (5a)	327.393	56.26
Cu(II)-glycyl-tyrosine (5b)	327.393	57.19
Cu(II)- alanyl-leucine (5c)	327.393	56.82
Cu(II)-alanyl-alanine (5d)	327.393	56.97
Ni(II)-glycyl- glycine (6a)	231.604	72.09
Ni(II)-glycyl-tyrosine (6b)	231.604	73.62
Ni(II)- alanyl-leucine (6c)	231.604	73.93
Ni(II)- alanyl-alanine (6d)	231.604	72.57

Table 6: Docking results 5(a-d) & 6(a-d):

Synthesized Compounds	PDB Code	E total (KJ/Mol)
Cu(II)-glycyl-glycine (5a)	2101	-89.15
Cu(II)-glycyl-tyrosine (5b)	2101	-160.11
Cu(II)- alanyl-leucine (5c)	2101	-73.14
Cu(II)-alanyl-alanine (5d)	2101	-68.17
Ni(II)-glycyl- glycine (6a)	2101	-57.89
Ni(II)-glycyl-tyrosine (6b)	2101	-141.65
Ni(II)- alanyl-leucine (6c)	2101	-112.46
Ni(II)- alanyl-alanine (6d)	2101	-74.34

Based on the docking results, only two compounds were screened for their in vitro anticancer activity against human cervical cancer cell line (HeLa). The samples were five prepared at different concentrations in dimethylsulfoxide (10, 20, 50, 75, 100 µg/mL). 5fluorouracil is one of the most effective anticancer agents was used as a reference drug in the study. The relationship between surviving fraction and drug concentration were plotted to obtain the survival curve of cervical cancer cell line. The response parameter calculated was the IC₅₀ value, which corresponds to the concentration required for 50% inhibition of cell viability. The metal complexes 5(b) & 6(b) showed a potent anticancer activity profile against HeLa cell lines with IC₅₀ values less than 50 µg/mL. The percentage of cell death was given in Table 7.

Table7:Anticanceractivityofsynthesizedmetallopeptides

Anticancer activity of Synthesized Metallopeptide complexes on HeLa cancer cells^a

Matallanantidas	Percentage of viable cells		
ivietaliopeptides	Control	Treated	
Cu(II)-glycyl-tyrosine 5(b)	100	36	
Ni(II)-glycyl-tyrosine 6(b)	100	29	

^aValues are mean of the three experiments. The viable HeLa cells were calculated after 48 hrs of synthesized metallopeptides treatment and strained with trypan blue dye exclusion test.

CONCLUSION

A new series of metal incorporated dipeptide derivatives were synthesized in good yields. Molecular docking studies conclude; the designed metallopeptides showed greater affinity towards HPV18-2IOI target protein for HeLa cancer. Based on the docking results, the synthesized complexes were screened for their anticancer activities. Tyrosine containing metal complex showed potent anticancer activity against HeLa cancer cells.

Acknowledgement: The authors are thankful to VIT University for providing the research facilities. The authors are thankful to SAIF, IIT Chennai for spectral analysis.

REFERENCES

- 1. Li-June Ming. Metallopeptides from Drug Discovery to Catalysis. Journal of the Chin. Chemical Society. 57, 2010, 285-299.
- 2. Rimando AM, Baerson SR. *Polyketides: Biosynthesis, Biological Activity, and Genetic Engineering (Acs Symposium Series),* American Chemical Society: Washington DC, 2007.
- (a) Grogan J, McKnight CJ, Troxler R F, Oppenheim FG. Zinc and copper bind to unique sites of Histatin 5. *FEBS Lett.* 491, 2001, 76-80.

(b) Brewer D, Lajoie G. Evaluation of the metal binding properties of the histatin 3 and 5 by electrospray ionization mass spectrometry. *Rap. Commun. Mass Spect.* 14, 2000, 1736-1745.

(c) Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG. Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. *Infec. Immun.* 69, 2001, 1402-1408.

(d) Gusman H, Lendenmann U, Grogan J, Troxler RF, Oppenheim FG. Is salivary histatin 5 a metallopeptide? *Biochim. Biophys. Acta* 1545, 2001, 86-95.

- 4. Navdeep B Malkar, Janelle L, Lauer-Fields and Gregg B Fields. Convenient synthesis of glycosylated hydroxylysine derivatives for use in solid-phase peptide synthesis *Tetrahedron Letters.* 41, 2000 1137-1140.
- 5. Martin RP, Petit-Ramel MM, Scarff JP. *Metal lons in Biological Systems. Mixed Ligand Complexes.* M. Dekker, New York, vol. 2, 1973, 3.
- 6. Farrell NP. Transition Metal Complexes as Drugs and Chemotherapeutic Agents; James, BR, Ugo R, Ed.; Reidel-Kluwer Academic Press: Dordrecht, 1989; Vol. 11.
- 7. Burkhard Koniga, Georg Dirscherl, Robert Knape and Paul Hanson. Solid-phase synthesis of metal-complex containing peptides. *Tetrahedron*, 63, 2007, 4918-4928.
- 8. Bodanzsky M, Bodanzsky A. *The Practice of Peptide Synthesis*; Springer: New York, NY, USA, 1984; pp. 68-143.
- 9. Berman HM. The Protein Data Bank: A Historical Perspective. *Acta Crystallographica*, 64, 2008, 88.
- 10. Duhovny DS, Inbar Y, Nussinov R, Wolfson HJ. Docking studies on abscisic acid receptor pyrabactin receptor 1

(*pyr1*) and pyrabactin like receptor1. *Nucleic Acids Research*, 33, 2005, 363-367.

- 11. Guex N, Peitsch MC. An environment for comparative protein modeling. *Electrophoresis*, 18, 1997, 2714-2723.
- 12. Fei Liu, Bai-Shan Fang. Cloning and Sequence Analysis of the Gene Encoding NiFe-Hyrogenase from *Klebsiella pneumonia. Chinese Journal of biotechnology*, 23(1), 2007, 133-137.
- 13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. *Nucleic Acids Research*, 28, 2000, 235-242.
- 14. Ambesi-Impiombato A, Bernardo D. Computational Biology and Drug Discovery: From Single-Target to Network Drugs *Current Bioinformatics*, 1, 2006, 3-13.
- 15. Carnichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Chemosensitivity testing of human lung cancer cell lines using the MTT assay. *Cancer Research*, 47, 1987, 936-42.
- 16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *J Immunol Meth*, 65, 1983, 55-63.

Source of Support: Nil, Conflict of Interest: None.

