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ABSTRACT 

This article reviews current evidence regarding the relationship between vegetarian eating patterns and cancer risk. Although plant-
based diets including vegetarian and vegan diets are generally considered to be cancer protective, very few studies have directly 
addressed this question. Most large prospective observational studies show that vegetarian diets are at least modestly cancer 
protective (10%–12% reduction in overall cancer risk) although results for specific cancers are less clear. However, a broad body of 
evidence links specific plant foods such as fruits and vegetables, plant constituents such as fiber, antioxidants and other 
phytochemicals, and achieving and maintaining a healthy weight to reduced risk of cancer diagnosis and recurrence. Also, research 
links the consumption of meat, especially red and processed meats, to increased risk of several types of cancer. Vegetarian and 
vegan diets increase beneficial plant foods and plant constituents, eliminate the intake of red and processed meat, and aid in 
achieving and maintaining a healthy weight. The direct and indirect evidence taken together suggests that vegetarian diets are a 
useful strategy for reducing risk of cancer. 
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INTRODUCTION 

espite widespread research efforts and increasing 
treatment options, cancer remains a leading cause 
of death worldwide. In 2004, cancer accounted for 

13% of deaths worldwide (~7.4 million people) with 
projections estimating an increase to 12 million deaths in 
2030.1 Yet cancer is still considered a largely preventable 
disease with estimates of up to 90%–95% of the risk with 
roots in environment and lifestyle.2 Important lifestyle 
factors include tobacco use, diet, alcohol, sun exposure, 
environmental pollutants, infections, stress, obesity, and 
physical inactivity. Dietary factors were estimated to be 
responsible for 30%–35% of all cancers in the US in 1981.3 
More recent estimates keep 35% as the overall impact of 
suboptimal dietary choices, but more specifically note 
that diet may be linked to as many as 70% of cases of 
colorectal and prostate cancer, 50% of cases for breast, 
endometrial, pancreatic, and gallbladder cancers, but only 
to about 20% of cases of lung, bladder, mouth, and 
esophageal cancers.4 

While it is clear that dietary patterns and choices are 
important modulators of cancer risk, the question 
remains just what dietary pattern is optimal for primary 
prevention of cancer. The question remains just what 
dietary pattern is optimal for primary prevention of 
cancer. The purpose, then, of this study is to review 
current evidence regarding the relationship between 
vegetarian eating patterns and cancer risk. 

Cancer 

Cancer encompasses a group of diseases related to 
malignant neoplasms. Known characteristics include: lack 
of apoptotic expulsion of mutant cells, prolific cell division 
with no inhibitor mechanisms; invasion of and nutrient 

diversion from ‘normal’ tissue cells, metastasis (blood and 
lymph) and/or tumour formation.4 In 2007, 13% of global 
mortality (~7.9 million people) was attributed to cancer.5,6 
While recent reductions have occurred in affluent 
countries (presumed due to technological advances6-10 
and/or education), an ageing population may elevate 
mortality (~12 million by 2030).5  

While cancers can arise from genetic predisposition, 
reduced immunity and adverse external environmental 
factors (pollution, toxins, etc.13,14 most are considered 
preventable (e.g. ~1.5 million deaths linked to smoking).6-

10 Diet (including cooking methods and alcohol 
consumption, ingestion of carcinogenic-initiating or -
promoting foodstuffs and exclusion of anti-carcinogenic 
foodstuffs) accounts for ~30% of cancers in developed 
countries.5,6,10,15-17  

While some propose the tumorigenic role of diet is more 
‘modifying’ than ‘instigating’18, the WHO’s ‘Global Burden 
of Disease’ survey study19 estimates (by way of 
extrapolating observational data) that increasing fruit and 
vegetable intake to a 600 g baseline could reduce the risk 
of esophageal, stomach and lung cancer by 20%, 19% and 
12%, respectively. Health authorities advocate diets 
limited in animal-based foods, charring cooking methods, 
dairy products, refined sugars, salt and hydrogenated and 
saturated fats, and rich in a selection of plant-based foods 
to protect against cancer.13,16,17,20 

This is not surprising the high quantity of non-nutritive 
phytochemicals (including carotenoids, polyphenols, 
flavenoids, isoflavones, catechins, phenolic compounds, 
indoles, tocotrienols and tocophenols) that plants contain 
possess well documented antioxidant, antineoplastic, 
anti-inflammatory and/or anti-carcinogenic 
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properties.10,18,21-27 Elevated quantities of protective 
phytochemicals and fiber in vegan diets were confirmed 
by Dewell et al.28, though use of soy protein supplements 
may have enhanced results. Steinmetz and Potter 
(1996)26 conducted a journalistic review of 228 published 
research studies (22 of which were animal studies, whose 
results should be approached with caution) investigating 
the protective effects of vegetables and fruit (including 
tomatoes). They reported strong inverse correlations 
between high consumption and cancer (especially 
stomach, esophageal, lung and bladder). Conversely, a 
significant number of the studies indicated positive 
correlations between citrus fruit and breast and colon 
cancers, and legumes and colon cancer.  

Vegan diets, however, are not defined by what they 
incorporate, but rather what they omit. Whereby any diet 
can increase protective dietary components and limit 
detrimental ones, on a molecular level the difference 
between ‘limiting’ and ‘removing’ food groups is 
significant. Vegans omit meat, fish and dairy, lending 
conjecture toward protein, calcium and B12 deficiencies 
and variations in essential fatty acid levels.29,30 

DIETARY PATTERNS AND CANCER RISK 

Epidemiologic evidence from the Cornell–Oxford China 
Study conducted in the 1970s and 1980s demonstrated 
important relationships between dietary patterns and 
cancer risk and highlighted the importance of diets rich in 
whole plant foods for cancer prevention.31 The magnitude 
of difference in cancer risk within China ranges by more 
than a factor of 10 across the 65 counties studied. 
Campbell and colleagues found that a group of diseases 
(notably cancers of the colon, lung, breast, brain, as well 
as leukemia, cardiovascular disease, diabetes) were all 
associated with a diet of nutritional extravagance – 
meaning a diet that was associated with higher levels of 
blood cholesterol and blood urea nitrogen. These risk 
markers were directly associated with the intake of milk, 
meat, eggs, dietary fat, and animal protein and inversely 
associated with dietary fiber and legumes. In addition, 
breast cancer mortality increased with increasing dietary 
fat concentration and blood cholesterol levels. Higher 
blood levels of vitamin C and beta carotene, antioxidants 
provided by plant foods, were associated with lower rates 
of several cancers.31 In another report, Campbell and 
Chen make the strong statement that “there appears to 
be no threshold of plant food enrichment or minimization 
of fat intake beyond which further disease prevention 
does not occur”. And they add that in the context of diets 
in China the addition of small amounts of foods from 
animal sources is associated with increased risk of chronic 
degenerative diseases including cancer.32  

Similarly, Carroll and colleagues observed a strong 
relationship between animal fat intake and breast cancer 
mortality across 38 countries and no relationship 
between plant fat intake and breast cancer in these same 
countries.33 And in China during this time, where the 
variations in fat intake were mostly from animal-based 

foods and ranged from 6%–24% percent (all within “low-
fat” ranges by US standards), breast cancer risk increased 
as fat intake increased.34  

Evidence from migration studies in the 1980s also pointed 
to the hypothesis that plant-based dietary patterns are 
more cancer protective than standard Western dietary 
patterns that tended to be higher in animal food, sugar, 
and highly processed food products. For example, in one 
study breast cancer incidence for Japanese women who 
migrated to Hawaii increased nearly 3-fold in the first 
generation and increased to 5-fold higher in the second 
generation. Similarly, colorectal cancer incidence jumped 
5-fold for first generation immigrants in this same study 
population while stomach cancer incidence dropped by 
about half.35 Other migrant studies demonstrate dramatic 
shifts in site-specific cancer incidence when groups of 
people migrate to countries with different dietary and 
other lifestyle patterns.36 Worldwide nutrition transitions 
in less developed countries continue to rapidly unfold and 
are linked to cancer largely through their direct or indirect 
effect on body weight. The key changes increasing body 
weight and thereby increasing the risk of cancer are foods 
from animal sources, caloric sweeteners, and highly 
energy dense beverages and foods. This evidence clearly 
points to the importance of environment, including food 
availability and dietary patterns, for cancer risk. 

Current interest in diets of hunter gatherers, both past37-

40 (Palaeolithic) and present41 (e.g. the Papua New 
Guinean Samberigians and Kitavans and the Australian 
Aboriginal tribes) is due to hypothesis that their intake of 
wild meat, fish and shellfish, leafy vegetables, fruit, nuts, 
insects and larvae38,39 is causal of consistent findings of 
low relative risk (RR) for diseases such as obesity, 
hypertension, hyperinsulinaemia, ischaemic heart 
disease, stroke and malnutrition.39 Outside the hunter-
gatherer realms, significant dietary modifications from 
farming (meat and fish), refinement (grains, sugars, fats) 
and the inclusion of dairy, alcohol and salt are 
hypothesized to have produced ever-increasing 
occurrence of these maladies, thus affording them the 
labels ‘diseases of civilization’ or ‘diseases of longevity’.38  

At present, cardiovascular disease (CVD) and cancer are 
the most prevalent mortality causing non-communicable 
diseases globally.42 Vast amounts of time, money and 
resources are utilized to identify risk reduction factors, 
many of which are fashioned after dietary aspects.  

The modern diet consists of three main groups: 
omnivorous (consumption of all food groups); lacto-ovo-
vegetarian or ‘vegetarian’ (consumption of all edible 
plant-derived material, eggs, dairy, honey; though no 
meat or fish) and vegan (sole consumption of edible 
plant-derived material). There exist variations to these 
(e.g. fructarian, pescatarian) as well as scope for 
dominance of particular food group or nutrient 
depending on the desired outcome (e.g. high animal 
protein, low refined carbohydrate, low fat, high fibre, 
etc). 
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Nutritional research has invariably found vegans to 
consume less zinc, protein, calcium, fat (including 
saturated fat), cholesterol and B12 and more 
carbohydrate, fibre, vitamins A, C, B6 (folate), B9, 
potassium, magnesium, manganese, copper and iron 
(presumably plant-derived non-haeme iron, whose 
bioavailability is inferior to haeme iron)43-45 relative to 
their omnivorous and vegetarian counterparts. One study 
reported vegans to show more diversity in their nutrient 
sources and to augment their B12, calcium, zinc, selenium 
and vitamin D intake with supplements.46  

Non-dietary related aspects were found to include higher 
socio-economic status, reduced alcohol and tobacco 
consumption and greater levels of education and dietary 
restraint (which reduced propensity toward obesity).44, 47-

49 While these factors may contribute to cancer and CVD 
risk reduction or promotion, only nutritional factors are 
investigated herein. 

Dietary Factors and Cancer Risk 

Red and processed meats increase the risk of some types 
of cancer. Diets rich in plant foods decrease the risk of 
many types of cancer; specifically, beneficial effects have 
been shown for fiber, fruits, vegetables, legumes 
including soy foods, and whole grains. Obesity increases 
the risk of some types of cancer. Many plant constituents, 
some nutrients, and other non nutriuent phytochemicals 
increase immune function. Each of these will be discussed 
below and each one points to the potential use fullness of 
vegetarian dietary patterns for reduction of cancer risk.2, 

50-59  

Meat and Cancer 

Higher levels of meat, especially red meat (egg, beef, 
pork, lamb) and processed meat (egg, bacon, hotdogs, 
luncheon meat, chicken nuggets, and other salted or 
cured meats) have been linked to a variety of cancers in a 
number of studies.2,10 

When meat is cooked at high temperatures through pan 
frying, grilling, or barbequing potential carcinogenic 
compounds, heterocyclic amines (HCAs), are formed.60,61 
These compounds and have been strongly linked with 
increased risk of cancer at a number of sites.62 A study of 
grilled chicken dishes from popular chain restaurants in 
California, found that all 100 samples contained some 2-
Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (one 
common HCA). The authors concluded that “although 
risks to the public have not been precisely calculated, 
strategies to reduce exposure to these and other 
carcinogens are warranted”.63 They also note that HCA 
formation in plant based grillable foods such as veggie 
burgers or mushrooms is highly unlikely.63 By definition, 
vegetarian diets are meat free. Even semi vegetarian diets 
are usually devoid of red and processed meats. Studies 
linking the consumption of red meat and the 
consumption of HCAs to cancer risk highlight the 
potential benefits of vegetarian eating styles to reduction 
of cancer risk. 

BODY WEIGHT AND CANCER 

Convincing evidence links higher levels of body fatness to 
increased risk of cancers of the esophagus, pancreas, 
colorectum, breast (postmenopausally), endometrium, 
and kidney.36 Consistent evidence also indicates that 
overweight and obesity are significant risk factors for 
cancer recurrence and comorbidities including 
cardiovascular disease and diabetes among cancer 
survivors.64 Adopting a physically active lifestyle can help 
individuals achieve a healthy weight and has been found 
to reduce the risk of colon and breast cancer.64  

Vegetarians on average weigh 3%–20% less and have 
lower rates of obesity than omnivores.65 In addition, short 
term studies of low-fat vegetarian and vegan diets have 
been successfully utilized to reduce body weight.65  

For these reasons, adopting a low fat vegetarian diet and 
regular physical activity will likely move individuals to a 
healthy weight and therefore reduce cancer risk. 

DIETARY PROTEIN MODULATES GLUCAGON/INSULIN 
ACTIVITY 

Dietary protein triggers release of both insulin and 
glucagon. However, the pancreatic islets obviously do not 
detect ‘protein’ per se, but rather the postprandial 
increase in circulating amino acids.66-69 The mechanisms 
whereby pancreatic α and β cells respond to amino acids 
are clearly distinct, since their responses to individual 
amino acids differ greatly. As a rough rule of thumb, 
essential amino acids are relatively more effective for 
releasing insulin, whereas non-essential amino acids – 
particularly arginine and pyruvate precursors – 
preferentially release glucagon. This makes sense 
homeostatically. When essential amino acids are amply 
available, it is appropriate to stimulate protein synthesis 
and storage with an insulin burst. When the non-essential 
amino acids used avidly for gluconeogenesis, as well as 
arginine (a catalyst of the urea cycle), are present in 
excess, it is reasonable for increased glucagon activity to 
stimulate gluconeogenesis. The failure of branched-chain 
amino acids to trigger glucagon release is understandable 
in light of the fact that these amino acids are catabolized 
primarily in skeletal muscle, which is not responsive to 
glucagon.  

In general, vegan proteins tend to contain a higher 
fraction of non-essential amino acids than the main 
animal-derived dietary proteins do.70 (A notable 
exception is gelatin.) For this reason, it is reasonable to 
expect that, if total protein intake is kept invariant, a 
vegan diet will promote greater net glucagon activity than 
an omnivorous diet. 

Presumably, the fasting amino acid profile is as crucial a 
determinant of basal glucagon secretion as fasting 
glucose is for insulin secretion. Conversely, even though 
basal plasma levels of essential amino acids may not in 
themselves have a potent impact on insulin secretion, 
they can be expected to modulate beta cell response to 
fasting or post-prandial glucose. Thus, when dietary 
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protein is relatively high in non-essential amino acids, 
down-regulation of insulin and up-regulation of glucagon 
is a logical consequence.  

As compared to soy protein, casein is a relatively poor 
source of non-essential amino acids; it is notably low in 
arginine and glycine, which are excellent secretogogues 
for glucagon. Sanchez and colleagues demonstrated that 
addition of arginine and glycine to a casein-based liquid 
meal resulted in a substantial increase of the postprandial 
glucagon/insulin ratio.71 (The fact that milk proteins are 
relatively poor glucagon releasers is probably not 
accidental – milk protein is ‘intended’ for the anabolic 
needs of the growing infant, not as substrate for 
gluconeogenesis). 

Health Benefits of Increased Glucagon Activity 

The liver appears to be the sole significant target for 
glucagon activity. The action of glucagon on hepatocytes 
is mediated by a stimulation of adenyl cyclase that raises 
cAMP levels.72 Insulin acts to antagonize hepatic glucagon 
activity, by activating cAMP phosphodiesterases and by 
additional mechanisms.73,74 Thus, the ratio of circulating 
glucagon to insulin is a crucial determinant of net 
glucagon activity in hepatocytes. 

 cAMP and protein kinase A regulate the synthesis of a 
wide range of hepatic proteins. In particular, cAMP 
downregulates the synthesis of a number of enzymes 
required for de novo lipogenesis and cholesterol synthesis 
(including citrate lyase, acetyl CoA carboxylase, fatty acid 
synthetase, and HMG-CoA reductase), while up-regulating 
key gluconeogenic enzymes as well as the LDL receptor 
and IGFBP-1.75-85 cAMP also post-translationally 
modulates the phosphorylation of key hepatic enzymes to 
stimulate gluconeogenesis and fatty acid oxidation.86-90  

The actions of cAMP in hepatocytes are readily 
rationalized when we realize that glucagon, as well as 
epinephrine (which likewise increases hepatocyte cAMP), 
are signals evoked by hypoglycemia. These hormones 
suppress less urgent anabolic activities of hepatocytes 
(such as fat or cholesterol synthesis) so that most 
available free energy can be diverted to fuel 
gluconeogenesis. Hepatic fatty acid oxidation accelerates 
to meet the increased energy needs for gluconeogenesis 
and to generate ketone bodies as ancillary fuel for the 
central nervous system. The induction of IGFBP-1 – a 
short halflife protein that sequesters unbound IGF-I, 
blocking its activity – is likewise physiologically adaptive. 
During hypoglycemia, the tonic insulin-like activity of the 
circulating pool of IGF-I could worsen matters by pushing 
serum glucose lower.91-93 The cAMP-mediated 
acceleration of IGFBP-1 synthesis minimizes this problem 
by rapidly down-regulating IGF-I activity. Suppression of 
serum ‘somatomedin’ activity following glucagon 
administration has in fact been documented in human 
volunteers.93 The effects of a chronic net increase in 
hepatic glucagon activity are readily predicted: 

 a reduction in de novo lipogenesis, decreasing fat 
storage in animals; 

 a reduction in cholesterol synthesis and in circulating 
LDL cholesterol 

 an increase in hepatic lipid oxidation (in part owing to 
lower malonyl-coA levels) that, in conjunction with 
the decrease in lipogenesis, causes a reduction in 
triglyceride synthesis and in serum triglycerides;  

 a decrease in effective IGF-I activity that can be 
expected to retard cancer development and in some 
instances slow cancer growth. (IGF-I, a crucial 
‘progression’ growth factor, enhances the mitotic 
rate of stem cells, pre-neoplastic lesions, and some 
cancers, while inhibiting apoptosis.94-98 

These effects are precisely what are observed when 
animals or humans are switched from omnivorous or 
casein-based diets to comparable diets in which soy 
protein is substituted for animal proteins. Soy-based diets 
decrease weight gain in obesity-prone rats99, lower 
elevated serum LDL cholesterol in cholesterol-fed rodents 
and in hypercholesterolemic humans99,100, lower elevated 
serum triglycerides, and often inhibit cancer induction 
and/or slow cancer growth in various animal cancer 
models.101,102 

WEIGHT REDUCTION WITH VEGAN DIETS 

since hepatic fatty acid oxidation promotes appetite 
control and lowers the respiratory quotient103, a relative 
disinhibition of hepatic fatty acid oxidation in vegans may 
play a role in the body weight reduction observed during 
ad libitum vegan diets. Increased thermogenic activity 
may also be involved; glucagon has thermogenic effects 
that is part may reflect the uncoupled nature of hepatic 
ketogenesis.104-106 Additionally, Iritani et al. recently 
reported that conversion of thyroxine to triiodothyronine 
is catalyzed more efficiently by liver microsomes derived 
from soy protein-fed rats (as compared to casein-fed 
controls); this was paralleled by significantly higher 
plasma T3 levels in the soy group.99 Conveivably, this up-
regulation of 5’-deiodinase activity may reflect increased 
growth hormone produciton107 – a consequence of soy 
feeding observed clinically.71  

Vegan diets may also impact adipocyte function. Kern et 
al. report that human adipocytes express IGF-I receptors, 
and that indeed the physiological activator of human 
adipocyte lipoprotein lipase activity is IGF-I rather than 
insulin.108 This intriguing finding merits replication. The 
implication is that IGF-I has an important anabolic impact 
on adipocytes – very reasonable in light of IGF-I’s function 
as a signal of abundance – and that conversely, measures 
(such as vegan diets) which down regulate IGF-I activity 
should promote leanness. Analogously, some of the 
weight loss on vegan regimens presumably is attributable 
to loss of lean mass consequent to a decreased anabolic 
impact of IGF-I on skeletal muscle. 

 



Int. J. Pharm. Sci. Rev. Res., 23(2), Nov – Dec 2013; nᵒ 45, 265-278                                                                     ISSN 0976 – 044X  

 

 

International Journal of Pharmaceutical Sciences Review and Research 
Available online at www.globalresearchonline.net  

 

269 

Vegan Diets Vs Cancer 

In a nutshell, the thesis presented here is that animal 
protein – precisely because it is ‘high-quality’ protein, rich 
in essential amino acids – will up-regulate IGF-I activity 
and thereby act as a cancer promoter; ‘low-quality’ vegan 
proteins can be expected to have the opposite effect. As 
stated previously, IGF-I acts as a ‘progression factor’ for 
most normal and pre-neoplastic tissues; although often 
not sufficient to induce mitosis by itself, IGF-I usually 
works in tandem with ‘competence’ growth factors to 
promote cell turnover.95 Induction of the IGF-I receptor is 
often one of the essential roles of competence growth 
factors. Recent studies also show that IGF-I can inhibit 
apoptosis in many normal and neoplastic cell lines.97,98,109 
It is now believed that apoptosis of genetically damaged 
cells is crucial to cancer prevention; cancer promotional 
agents invariably demonstrate anti-apoptotic activity.110-

115 Increased IGF-I activity can be expected to increase the 
rate at which fixed mutations are accumulated in stem 
cells by promoting stem cell turnover; by suppressing 
apoptosis, it can be expected to increase the chance that 
initiated cells will engender clinical cancer. In addition, 
the mitotic and apoptotic rates of many cancers are 
sensitive to IGF-I activity.95 Dietary modulation of IGF-I 
activity can therefore be expected to have profound 
consequences for cancer risk and progression.  

As noted above, reduction of IGF-I activity during a vegan 
diet can be expected owing to up-regulation of IGFBP-1. 
However, the possibility that such diets may also 
modestly decrease hepatocyte synthesis of IGF-I should 
be considered. In clinical or animal studies, low-protein 
diets of adequate caloric content decrease the serum 
level and hepatic synthesis of IGF-I116-120; this effect 
appears to be attributable to a dietary deficit of certain 
essential amino acids.120-122 Low intake of these essential 
amino acids markedly destabilizes the 7.5kb form of the 
IGF-I mRNA, and may also impede translation of IGF-I 
mRNAs.122-124 Severe protein restriction may not be 
required to evoke this effect. 

Moreover, down-regulation of IGF-I activity in vegans is 
often not solely attributable to the protein content of 
vegan diets. To the extent that vegan diets, as compared 
to omnivorous diets, tend to be relatively low in fat 
(especially saturated fat), and high in fiber, these factors 
should promote increased insulin sensitivity – both 
acutely, and by aiding prevention of obesity.125,126 This 
improved insulin sensitivity will down-regulate insulin 
secretion, thus contributing to the protective increase in 
glucagon/ insulin ratio and the resulting up-regulation of 
IGFBP-1. Evidently, several independent mechanisms can 
interact to reduce IGF-I activity in vegans. (Perversely, the 
saturated fats featured in many animal products are the 
most efficient at inducing insulin resistance, whereas 
ingestion of monounsaturates – found in such favorite 
vegan foods as avocadoes, olives, and olive oil – appear to 
have little impact on insulin sensitivity in humans127,128; 
perhaps this is a major reason why monosaturates 
emerge blameless in much recent epidemiology.) 

Hyperinsulinemia as A Risk Factor For Breast, 
Endometrial, And Colon Cancers 

Several authors have presented cogent evidence that 
hyperinsulinemic insulin resistance is an important risk 
factor for postmenopausal breast cancer, and that 
hyperinsulinemia induces the increased testosterone 
production, the reduction in serum SHBG, and the 
increased free estradiol levels that characterize subjects 
at high risk for this disorder.129-132 It may be reasonable to 
extend and clarify this hypothesis by proposing that the 
fundamental risk factor is a high activity of insulin relative 
to glucagon in hepatocytes, resulting in a suppression of 
IGFBP-1 production. As suggested previously130-132, the 
consequent increase in effective IGF-I activity can be 
expected to potentiate the LH-induced production of 
androgens by ovarian stroma,133-135 while decreasing 
hepatic production of SHBG. Peripheral aromatization of 
these androgens will give rise to estrogens, an increased 
proportion of which will remain unbound owing to the 
decrease of circulating SHBG and the increased 
competition by testosterone for binding to this SHBG. The 
increased effective activities of both estrogen and IGF-I 
will then synergize to stimulate mitosis and inhibit 
apoptosis in pre-neoplastic breast tissue; this synergism 
results, at least in part, from estrogen-mediated induction 
of IGF-Ireceptors.136,137 

This formulation recognizes a countervailing protective 
role for glucagon – and, by implication, for vegan proteins 
that preferentially promote glucagon release. It also 
stresses the importance of insulin activity on hepatocytes. 
The equivocal impact of diabetes on breast cancer risk132 
is rationalized by the realization that net insulin activity 
on hepatocytes is decreased in diabetics – even in type 2 
diabetics who are hyperinsulinemic. Hepatocytes are 
typically insulin resistant in type 2 diabetics; in type 1 
diabetics and in type 2 diabetic with profound beta cell 
failure, portal insulin concentrations are sub-normal. That 
some studies nevertheless do see an increased breast 
cancer risk associated with type 2 diabetes138,139 may 
reflect the fact that this type of diabetes is usually 
preceded by a long period of compensated 
hyperinsulinemic insulin resistance. 

These considerations enable the prediction that a low fat 
vegan diet will be profoundly protective with respect to 
risk for postmenopausal breast cancer. The protein 
content of this diet will preferentially support glucagon 
activity and possibly decrease IGF-I synthesis. Other 
aspects of the diet – a low intake of fat, increased fiber, 
decreased propensity to induce obesity – will promote 
good peripheral insulin sensitivity and thus down regulate 
insulin secretion. Such diets are likely to be relatively high 
in phytochemicals that may have anti-initiating activity, 
and the possibility that phytoestrogens contribute some 
protection does merit further evaluation.140 

Endometrial cancer is also associated with obesity (and, 
by implication, insulin resistance), and the role of 
increased unopposed estrogen activity in its etiology is 
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well known. A favorable impact of a low-fat vegan diet on 
endometrial cancer risk is therefore readily predicted. As 
in the breast, estrogen induces IGF-I receptor expression 
in the uterus.141 

Risk of colon cancer has likewise been linked to 
hyperinsulinemia.142 That induction of this cancer may be 
particularly sensitive to IGF-I activity is suggested by the 
high-incidences of colon polyps and colon cancer 
associated with acromegaly.143,144 The normal colonic 
mucosa, as well as many colon adenocarcinomas, are IGF-
I sensitive.145-149 

The puzzling fact that postmenopausal estrogen 
replacement does not increase breast cancer risk as 
greatly or consistently as might be expected, may reflect 
the fact that orally-administered estrogens (but not 
transdermal or endogenous estrogens) suppress hepatic 
production of IGF-I.150 This suggests that long-term 
estrogen replacement therapy may reduce the risk of 
colon cancer and perhaps of other cancers that are not 
estrogen-dependent. In fact, decreased colon cancer risk 
associated with estrogen replacement has recently been 
demonstrated,151-155 this effect is quite substantial – 30–
50% reduction in risk is seen in current or long-term 
users. 

 A concurrent vegan diet and insulin-sensitizing lifestyle 
should amplify this benefit, and also reduce the breast 
cancer risk associated with estrogen replacement. Indeed, 
the down-regulation of IGF-I activity achievable by oral 
estrogen in conjunction with a vegan diet might be 
sufficiently large to be useful in cancer therapy – either as 
a palliative regimen or as an adjuvant to apoptosis- 
inducing measures. Tamoxifen, which is reported to 
decrease IGF-I and/or up-regulate IGFBP-1156,157, might be 
a useful alternative to estrogen in men or in women who 
have estrogen-sensitive tumors. It will be interesting to 
determine whether soy phytoestrogens can influence 
hepatic IGF-I production. In light of the media frenzy 
regarding hormone replacement therapy’s impact on 
breast cancer risk, wouldn’t it be ironic if such therapy 
proves to have a neutral or even favorable impact on 
overall cancer mortality? 

Igf-I Activity and Prostate Cancer Risk 

IGF-I is a potent growth factor for normal prostatic 
epithelium, as well as for prostate adenocarcinoma cell 
lines158-164. That IGF-I activity is crucial for prostate cancer 
growth is suggested by studies showing that IGFBP-1 and 
other IGF-1 antagonists suppress the proliferation of 
cultured prostate cancer cells, that transfection of such 
cells with antisense DNA to the IGF-I receptor inhibits 
their growth and invasiveness in vivo, and that an 
antagonist of GHRH (which decreases IGF-I levels) 
suppresses the growth of human prostate cancer cell lines 
in nude mice.163-167 Prostate-specific antigen (PSA), a 
marker for prostate cancer prognosis, is a serine protease 
that cleaves and inactivates IGFBP-3; it may therefore 
serve to induce a local increase in IGF-I activity.168 There is 
evidence that IGF-I may activate the androgen receptor in 

human prostate cancer cell lines, in the absence of 
androgens.169,170  

Increased IGF-I activity can also up-regulate testosterone 
availability. In addition to suppressing hepatic SHBG 
production, IGF-I may promote GnRH secretion, 
potentiate the LH response to GnRH in pituitary 
gonadotrophs, and likewise potentiate the steroidogenic 
response of Leydig cells to LH.171-176 Reduced levels of free 
testosterone reported in vegetarians may reflect these 
effects.177,178 It can be concluded that high IGFI activity 
should have a potent growth promotional/antiapoptotic 
impact on prostate epithelium, owing both to a direct 
impact of IGF-I, as well as an increase in testosterone 
availability. 

Two other high-incidence cancers in Western society are 
those of the ovary and pancreas. Both theca and 
granulosa cells of the normal ovary are IGF-I 
responsive.133-135,179 Virtually all ovarian cancers and 
cancer cell lines examined express IGF-I receptors, and 
respond to IGF-I as a growth factor.180,181 Estradiol 
potentiates the response to IGF-I in some ovarian cancer 
cell lines by up-regulating the IGF-I receptor.182 Case-
control studies often but not invariably point to obesity as 
a risk factor.183-186 With regard to the pancreas, IGF-I 
appears to be a progression factor for cells of the 
exocrine pancreas, and many recent reports indicate that 
pancreatic adenocarcinomas express IGF-I receptors and 
are IGF-I responsive.187-190 In some pancreatic cancer cell 
lines, IGF-I functions as an autocrine growth factor, such 
that antibodies to the IGF-I receptor, or antisense DNA to 
this receptor, inhibit cell growth in vitro. An LHRH agonist, 
which down-regulates IGF-I receptor expression in 
carcinogen-induced autogenous pancreatic cancers in 
hamsters, markedly retards the growth of these 
cancers.191 Some epidemiology links pancreatic cancer 
risk to high BMI as well as to diabetes; the latter 
correlation, however, declines with time, suggesting that 
the associated diabetes is sometimes caused by the 
nascent pancreatic cancer. Overall, these findings appear 
consistent with the possibility that IGF-I activity 
modulates the promotion and progression of both 
ovarian and pancreatic cancer.192-196 

CHEMOPREVETION OF CANCER BY PLANT POLYPHENOLS 

Epigallocatechin galate 

EGCG induces apoptosis and cell cycle arrest, and exhibits 
anti-angiogenic and anti-metastatic potential in 
hepatoma cells by modulating signal transduction 
pathways. Paradoxically, EGCG may exert its cytostatic 
effects against cancer cells through a pro-oxidant 
activity197, although it has strong antioxidant properties. 
In addition, a number of animal studies have shown that 
EGCG prevents chemical-induced HCC. Moreover, a 
number of studies with tea extracts rich in EGCG have 
given very promising results for its chemopreventive 
activity198-202, although there was not always an apparent 
relationship between EGCG concentration and liver tumor 
response.203 So far, there are no clinical or 
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epidemiological studies available on EGCG 
chemopreventive activity against HCC. However, use of 
EGCG in clinical trials for other cancer types, such as 
cervical cancer, has given optimistic results.203 

Quercetin 

Quercetin seems to exert its chemoprevention potential 
through inhibition and induction of survival and death 
signaling pathways respectively in liver cancer cells. 
Moreover, in animal studies, quercetin protects from 
DEN- or AFB(1)-induced liver carcinogenesis due mainly to 
its strong antioxidant activity and consequent prevention 
of ROS-induced DNA mutations in critical genes for cell 
cycle control, such as p53. Although there are concerns 
about the toxicity and safety of quercetin, human studies 
have not shown adverse effects associated with the oral 
administration of quercetin in a single dose of up to 4 g or 
after one month of 500 mg twice daily.204 

Luteolin 

the mechanisms for the potential anticarcinogenic effects 
of luteolin against HCC include mainly induction of 
apoptosis and cell cycle arrest by action on critical 
molecular targets for cell survival such as p53, p21, cyclin 
dependent kinases and caspases in liver cancer cells.205 
Indeed, the induction of caspase-8 and -9 suggests that 
luteolin may activate both molecular pathways for 
capsases, the extrinsic and mitochondrial respectively. 
Moreover, like other polyphenols, luteolin’s apoptosis 
induction in cell culture studies seems to be mediated 
through pro-oxidant effects.206 There are limited data 
regarding the in vivo chemopreventive activity of luteolin 
against HCC, and thus to fully elucidate the molecular 
mechanisms of its action and potential use in clinical 
trials, more in-depth animal studies are needed. 

Silymarin and Silibinin 

The potential use of silymarin and its most active 
constituent, silibinin, as chemopreventive agents against 
HCC is based on their capability to induce pro-apoptotic 
and reduce anti-apoptotic proteins in hepatoma cells. In 
addition, they have been shown to possess anti-
metastatic and anti-angiogenic potential in cell culture 
studies. Moreover, their pro-apoptotic effects on liver 
cancer cells have been confirmed in in vivo experiments. 
Interestingly, a number of clinical studies have been 
performed with silymarin investigating its 
hepatoprotective activity.207  

Acacetine 

Acacetin inhibited cell growth, induced cell cycle arrest at 
G1 phase and apoptosis through increase in levels of p53 
protein and its downstream pro-apoptotic targets, 
p21/WAFI and Bax proteins. In addition, the acacetin-
induced increase in Fas/APO-1 and its ligand FASL 
suggested the involvement of FAS/FASL system in the 
observed apoptosis.208 

 

Genistein 

Genistein induces inhibition in hepatoma cells growth, 
apoptosis and metastasis by modulating the expression of 
antiapoptotic, pro-apoptotic and regulating motility 
proteins, as well as the activity of cyclin dependent 
kinases regulating cell cycle. These in vitro effects have 
also been confirmed in animal studies, since genistein 
induced apoptosis and inhibited metastasis of HCC 
induced by either chemicals or implanted hepatoma 
cells.209  

Daidzein 

Daidzein inhibit hepatoma (i.e. HepG2, Hep3B, Huh7, PLC 
and HA22T) cell growth, induce apoptosis through 
caspase-3 activation and PARP cleavage.210 Daidzein was 
also demonstrated to affect the redox status in hepatoma 
cells although the data are conflicting since it induced 
mRNA catalase expression but at the same time caused a 
mild oxidative stress.211 However, an in vivo study showed 
that daidzein administration (50 mg/kg) to rats increased 
antioxidant enzymes activity such as SOD, catalase, GPx, 
GST, DT-diaphorase (DTD) and GSH levels in liver.212  

Stilbenes (trans-resveratrol) 

The anticarcinogenic effects of trans-resveratrol against 
HCC include apoptosis and cell cycle arrest by modulation 
of the expression and activity of pro-apoptotic, anti-
apoptotic and cell cycle regulating proteins, and anti-
metastatic potential and anti-angiogenic potential by 
modulation of the expression of pro-angiogenic 
molecules.210,213,214 

Cucurmin 

Curcumin’s suppression against HCC cells is largely due to 
inhibition of abnormal cell proliferation and apoptosis 
through modulation of relevant signaling pathways.202,215-

217. Curcumin has also been shown in vivo to inhibit HCC 
induced by chemicals or implanted hepatoma cells. 
Moreover, both in vitro and in vivo studies exhibited anti-
angiogenic and anti-metastatic properties of curcumin 
against hepatocarcinogenesis.  

Cafeic acid 

Both in vitro and in vivo studies have shown that cafeic 
acid and its derivative, cafeic acid phenyl ester (CAPE), 
inhibit growth and metastasis of HCC through modulation 
of expression of proteins involved mainly in NF-jB 
molecular pathway.218,219  

Protocatechuic acid 

Protocatechuic acid has been shown to inhibit HepG2 cell 
growth through induction of JNK and p38 proteins.220 
Protocatechuic acid to induces apoptosis through 
mitochondrial membrane disruption and caspase-3 and -8 
activation, exhibit anti-metastatic potential by reducing 
intercellular adhesion molecule (ICAM)-1 level, and 
possible anti-angiogenic and anti-inflamatory activity by 
reducing VEGF, interleukin (IL)-6 and (IL)-8 levels.221 
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Capsaisin 

In vitro studies have shown capsaicin to induce apoptosis 
in HepG2 cells.222,223 In particular, capsaicin-induced 
apoptosis in HepG2 cells is associated with increased 
levels of ROS, intracellular Ca2+, p53 protein, cytochrome 
c protein, an indicator of mitochondrial membrane 
disruption, growth arrest and DNA damage-inducible 153 
(GADD153) protein, and caspase-3 activity, and decreased 
levels of the anti-apoptotic proteins Bcl-2 and Bax.224  

Another study suggested that the capsaicin- induced 
inhibition of NAD(P)H:quinone oxidoreductase (NQO1) 
enzyme activity leads to increased ROS levels in HepG2 
cells225. The increased ROS levels, in turn, result in 
activation of Akt and increased nuclear translocation of 
NF-E2- related factor (Nrf2) that binds to the antioxidant 
response element (ARE), thus causing the expression of 
heme oxygenase-1 (HO-1), an enzyme conferring 
cytoprotection against oxidative stress.225  

Also, capsaicin has been shown to induce apoptosis in SK-
Hep-1 HCC cells mediated through down-regulation of 
anti-apoptotic Bcl-2 protein and upregulation of pro-
apoptotic protein Bax and caspase-3.222  

DISCUSSION 

The complexity of factors impacting overall cancer risk, 
the heterogeneity of cancer etiology, and the limitations 
and the variation in dietary patterns may be responsible 
in part for the lack of clarity regarding the relationship 
between overall cancer risk and specific dietary factors. In 
addition, specific constituents in these whole foods such 
as soluble fiber, carotenoids, indoles, isoflavones, among 
hundreds of others have been linked to protection against 
specific cancers.  

Vegetarian and vegan diets tend to be higher in these 
protective plant foods and plant constituents than 
omnivorous diets. Vegetarian and other diets built mainly 
from plant foods would also be expected to support 
higher immune function, largely because they tend to be 
richer in cancer protective phytochemicals. The extent to 
which a vegetarian diet is cancer protective likely 
depends on how rich the dietary pattern is in these 
protective whole plant foods.  

Wide homogeneity of vegetarian diets exists such that 
individuals choosing self reported vegetarian diets may 
exclude only some types of meat to all animal products, 
may include very large or very small amounts of highly 
processed food, may include only raw foods, or may vary 
widely with respect to cheese and other dairy product 
consumption. 

Some factors may even be protective for some types of 
cancer and causal or promoting for other types of cancer. 
For example, adequate vitamin D status is thought to be 
protective against prostate cancer, but sun exposure (the 
stimulus for vitamin D production in the human body) is a 
major risk factor for skin cancer. Similarly higher calcium 
intakes are associated with decreased risk of colon cancer 

but increased risk of prostate cancer. Perhaps even more 
problematic for nutrition and cancer research generally 
and the question at hand specifically are the problems 
inherent in measuring food intake and quantifying dietary 
patterns.  

Results for specific cancers are less clear although there is 
some observational evidence that vegetarian diets may 
reduce risk of prostate, breast, colon, stomach cancer, 
bladder cancer, ovarian cancer, and cancers of the 
lymphatic and hematopoietic tissues. 

Choosing a vegetarian dietary pattern is an easy way to 
follow the expert recommendations to “eat mostly foods 
of plant origin” and “limit intake of red meat and avoid 
processed meat” to reduce cancer risk. 

The vegan diet typically differs from vegetarian and/or 
omnivorous by: reduced protein, energy, saturated fat, 
cholesterol, calcium, B12, phosphorous, zinc and sodium 
levels; and increased carbohydrate, fiber, saturated fat; 
vitamins A, C, B6, B9, magnesium and potassium levels. 
Whilst aspects of this diet in reducing risk of cancer may 
be obvious (e.g. increased phytochemicals), studies 
assessing the efficacy or detriment of some nutrients 
remain ambiguous and/or incomplete.  

A vegan diet, aside from its deficit of vitamin B12 activity 
(readily compensated by supplementation), is typically 
more micronutrient-dense (per calorie) than the diets 
favored by omnivores, higher in protective 
phytochemicals and fiber, and usually somewhat lower in 
fat – especially saturated fat. Fears that a vegan diet may 
be inadequate in protein quality or quantity are 
unfounded. Advocates of veganism often cite the 
remarkable fact that human breast milk – presumably 
‘designed’ to promote anabolism during a time of rapid 
growth – has a protein content that corresponds to only 
5% of total calories. With the exception of fruit or refined 
sugar or oils, the protein content of vegan foods is 
considerably higher than this. 

Clearly, vegan protein is not the only way to achieve a 
favorable balance of glucagon/insulin activity. Measures 
which promote the insulin sensitivity of skeletal muscle, 
and thus down-regulate insulin secretion, should have 
comparable benefit. A low-fat, fiber-rich diet, coupled 
with regular exercise and avoidance of visceral obesity, 
should be useful in this regard. 

CONCLUSION 

No diet or regimen can be expected to be free of any 
drawback. The fact that a low-fat, fiber-rich vegan diet is 
likely to reduce risk for most types of cancer, should be 
sufficient to recommend it. Those who are willing to 
make less striking changes in their lifestyle can be 
encouraged to reduce their consumption of animal 
products.  
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