INTRODUCTION

The grasses that yield food and fodder are well known from times immemorial and considerable amount of research work has been carried on them. But the grasses that yield therapeutically important products are among the least studied in the cyperaceae family. Phytochemicals are naturally occurring, biologically active chemical compounds in plants. They act as a natural defense system for host plants and provide colour, aroma and flavor. These are non-nutritive plant chemicals that have protective or disease preventive properties.1 Many antioxidant compounds naturally occurring in plant source have been identified as free radicals or active oxygen scavengers.2 Phytochemicals like carotenoids, flavonoids and polyphenols, they posses antioxidant activity and protect our cells against oxidative damage and reduce the risk of developing certain types of cancer. The majority of the active compounds are phenolics, vitamin C, vitamin E, tannins and carotenes.3 Sources of natural antioxidants are primarily plant phenolics such as flavonoids that exhibit antioxidant, antimicrobial, anti carcinogenicity and other biological activities.4

World plant biodiversity is the largest source of herbal medicine and still about 60-80% world population rely on plant based medicines which are being used since the ancient ages as traditional health care system. It is now clear that, the medicinal value of these plants lies in the bioactive phytochemical constituents that produce definite physiological effects on human body. These natural compounds formed the base of modern drugs as we use today.5 Cyperaceae is a family of monocotyledonous graminoid flowering plants known as sedges, which superficially resemble grasses. The family is large, with 5,500 species described. In about 109 genera worldwide although estimates of numbers vary greatly due to differing taxonomic concepts of individual researches and because modern sedge floras are available for only a few countries. The Chief importance of sedges lies in their forming a major natural constituent of wetlands and river side vegetation, where their densely tangled rhizomes contribute to erosion control and water purification. While on the natural theme, the dense sedge beds that form in swampy regions provide food and shelter for bird’s animals and other aquatic life thus attracting ecosystem. These grasses are included in traditional medicine system but yet have to be explored. Hence the aim of this study is to examine the phytochemical composition of aqueous extracts of ten cyperaceae grass species. Preliminary phytochemical screening of the plants is primarily an important aspect in finding the chemical constituents in plants.

Alkaloids which are one of the largest groups of phytochemicals in plants have amazing effects on human based on their toxicity against cells of foreign organisms. Therefore, the compounds detected may be responsible for the antibacterial activity of the herb extracts. Flavonoids exhibited a wide range of biological activities such as antioxidant, anti-inflammatory, antimicrobial, anti-angionic, anticancer and anti-alergic.6,7,3 The flavonoids have aroused considerable interest recently because of their potential beneficial effects on human health. They have been reported to have antiviral, anti allergic, anti platelet, anti inflammatory, antitumor, anti carcinogenic and anti ageing properties.8,9 Flavonoids may help provide protection against these diseases by contributing along with antioxidant vitamins and enzymes. Flavonoids are free radical scavenger, super antioxidant and potent water soluble which prevent oxidative cell damage and have strong anti cancer...
activity. Flavonoids apart from their antioxidant protection effects, inhibit the initiation, promotion and progression of tumour. Saponins which are one of the active constituents involved in plant disease resistance because of their antimicrobial activity. Traditionally, saponins are subdivided into triterpenoid and steroid glycoside. Tannins are phenolic compound which act as primary antioxidants or free radical scavengers. According to, several phenolic compounds like tannins present in cells of plant are potent inhibitors of many hydrolytic enzymes such as proteolytic macerating enzymes used by plant pathogens. In addition, herbs that has tannins as their main components are astringent in nature.

**MATERIAL AND METHODS**

**Collection and identification of plant material**

Fresh leaves of *Bulbostylis barbata*, *Cyperus difformis*, *Cyperus rotundus*, *Fimbristylis monostachya*, *Fimbristylis cymosa*, *Kyllinga monoceps*, *Kyllinga triceps*, *Paspalidium flavidum* and *Scelaria lithosperma* were collected from the different locations of South India, during the month of December, 2011. The leaves were washed thoroughly 2-3 times with running tap water, leaf material was then air dried under shade after complete shade drying the plant material was used for phytochemical analysis.

**Preparation of extract**

The grinded leaf material of 5g was crushed in 25 ml of sterile water, boiled at 50-60°C for 30 minutes on water bath and it was filtered through Whatman No. 1 filter paper. Then filtrate was centrifuged at 2500 rpm for 15 minutes and filtrate was stored in sterile bottle at 5°C. The condensed extracts were used for preliminary screening of phytochemicals by following the methods for alkaloids, lignin, phenols and steroids; Coumarins and flavonoids; glycosides, terpenoids and saponins and tannins. Quantification of alkaloids and saponins; flavonoids and phenols and tannins.

**Table 1: Preliminary phytochemical screening aqueous extract of ten selected cyperaceae grass species**

<table>
<thead>
<tr>
<th>Name of the species</th>
<th>Alkaloids</th>
<th>Coumarins</th>
<th>Flavonoids</th>
<th>Glycosides</th>
<th>Lignin’s</th>
<th>Phenols</th>
<th>Quinones</th>
<th>Saponins</th>
<th>Steroids</th>
<th>Tannins</th>
<th>Terpenoids</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Bulbostylis barbata</em></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><em>Cyperus difformis</em></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>Cyperus rotundus</em></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>Fimbristylis cymosa</em></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><em>Fimbristylis eragrostis</em></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><em>Fimbristylis monostachya</em></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>Kyllinga monoceps</em></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>Kyllinga triceps</em></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><em>Paspalidium flavidum</em></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>Scelaria lithosperma</em></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: ‘+’ indicates presence and ‘-‘ indicates absence.

**RESULTS AND DISCUSSION**

Qualitative phytochemical studies revealed that the aqueous extract of plant species contained phytoconstituents like Alkaloids, Coumarins, Flavonoids, Glycosides, Lignins, Phenols, Quinones, Saponins, Steroids, Tannins and Terpenoids (Table 1). Six species of selected plants posses Alkaloid compounds in aqueous extracts. The highest levels of alkaloids were found in *Cyperus rotundus* 0.810 mg/g dw followed by *Scelaria lithosperma* (Table 2). Alkaloids are found in *Cymbopogon and Cyndonon dactylon*. Most of the plants have alkaloids in different organs with different chemical configurations. Alkaloids are beneficial chemicals to plants with predator and parasite repelling and physical state. Number of alkaloids was isolated from dicots and using as efficient drugs. Coumarins are present in three plants among selected ten grasses, which reduce the impact of grazing animals. Though the compound has a pleasant sweet odor, it has a bitter taste, and animals tend to avoid it. Reports on coumarin activity includes anti-HIV, anti-tumor, anti-hypertension, anti-arrhythmia, anti-inflammatory, anti-osteoporosis, antiseptic and analgesic. It is also used in the treatment of asthma and lymphedema.
Table 2: Quantification of secondary metabolites from selected cyperaceae grass species (mg/g dw)

<table>
<thead>
<tr>
<th>Name of the species</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
<th>Phenols</th>
<th>Saponins</th>
<th>Tannins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbostylis barbata</td>
<td>-</td>
<td>0.020 ± 0.009</td>
<td>0.200 ± 0.018</td>
<td>0.020 ± 0.011</td>
<td>-</td>
</tr>
<tr>
<td>Cyperus difformis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.005 ± 0.001</td>
</tr>
<tr>
<td>Cyperus rotundus</td>
<td>0.810 ± 0.033</td>
<td>0.106 ± 0.022</td>
<td>0.630 ± 0.041</td>
<td>0.318 ± 0.042</td>
<td>0.423 ± 0.038</td>
</tr>
<tr>
<td>Fimbristylis cymosa</td>
<td>-</td>
<td>0.005 ± 0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fimbristylis eragrostis</td>
<td>0.024 ± 0.004</td>
<td>0.015 ± 0.003</td>
<td>0.082 ± 0.011</td>
<td>0.013 ± 0.002</td>
<td>-</td>
</tr>
<tr>
<td>Fimbristylis monostachya</td>
<td>0.019 ± 0.007</td>
<td>0.042 ± 0.009</td>
<td>-</td>
<td>0.009 ± 0.002</td>
<td>0.033 ± 0.007</td>
</tr>
<tr>
<td>Kyllinga monoceps</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.008 ± 0.003</td>
<td>0.217 ± 0.004</td>
</tr>
<tr>
<td>Kyllinga triceps</td>
<td>0.070 ± 0.009</td>
<td>0.041 ± 0.003</td>
<td>0.007 ± 0.002</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paspalidium flavidum</td>
<td>0.010 ± 0.001</td>
<td>0.039 ± 0.007</td>
<td>-</td>
<td>-</td>
<td>0.028 ± 0.007</td>
</tr>
<tr>
<td>Scelaria lithosperma</td>
<td>0.401 ± 0.026</td>
<td>-</td>
<td>0.136 ± 0.034</td>
<td>0.240 ± 0.002</td>
<td>0.106 ± 0.003</td>
</tr>
</tbody>
</table>

Among ten selected plants seven species possessing Flavonoids. Cyperus rotundus containing maximum levels of flavonoids followed by Fimbristylis monostachya. Flavonoids are recorded in the grass of Cyperus rotundus.25 Cynodon dactylon,21 Saccharum spontaneum,26 Imperata cylindrica,27 Pennisetum purpureum and Cymbopogon citrates.28,29 They also inhibit microbes which are resistant to antibiotics.30 Flavonoids are free radical scavengers and have strong anti-cancer activity31 evidence of their inherent ability to modify the body’s reaction to allergies, virus and carcinogens. flavonoid rich species can play the role in pharmacological activities as anti-inflammatory, analgesic, anti-oxidant, antifungal and immunostimulant providing a key role of flavonoids to their biological actions.32 Glycosides substances are absent in six grasses and found in four grasses among selected ten species. They are important in medicine because of their action on heart and are used in cardiac insufficiency.33 Lignins are present in five species of selected plants. Lignins are significant components in the global carbon cycle; the resistance of lignin to microbial degradation enhances its persistence in soils.34

Five species among ten selected grasses posses phenol compounds. Cyperus rotundus is the rich source of phenol compounds followed by Bulbostylis barbata.21,29,27 studied the phenols in Cymbopogon citrates and Imperata cylindrica. The higher amount of phenols are important in the regulation of plant growth, development and disease resistance. It can be used as fungicide, pesticides, antiseptic and disinfectant and in the manufacture of resins. Plant phenols may interfere with stages of Cancer process. Potentially resulting in a reduction of cancer risks.34 Over the last few years, several experimental studies have revealed biological and pharmacological properties of phenolics compounds, especially their anti-inflammatory activity, antiviral and cytotoxic activity.35 Phenolics are active in curing kidney and stomach problems as well as helpful as anti-inflammatory in action.36 Phenols are reported antitumour agents and to exhibit antiviral and antimicrobial activities,37 hypotensive effects and antioxidant properties.38 Phenols are said to offer resistance to diseases and pest in plants.39

Figure 1: Quantification analysis of alkaloid content from grasses of cyperaceae

Figure 2: Quantification analysis of flavonoid content from grasses of cyperaceae

Quinones are present in five plants of selected species. Quinones are known to act as mobile electron carriers within the lipid phase of the membrane in photosynthetic and respiratory electron transport chains.40 The function of quinones is essential for proton-based energy coupling and specific binding sites, allowing only two-electron transfer steps, prevent damage of the cell by free-radical formation.41

Saponin content are present in maximum number of selected species showed. Maximum levels of saponins.
were present in *Cyperus rotundus* 0.318 and lower level in *Kyllinga monoceps* 0.008 mg/g dw. Traditionally saponins have been extensively used as detergents as pesticides and mollusicides, in addition to their industrial applications as foaming and surface active agents and also have beneficial health effects.\(^{11}\) Saponins has relationship with sex hormones like oxytocin, which is a sex hormone involved in controlling the onset of labour pains in female and the subsequent release of milk.\(^{42}\) Saponins enhance nutrient absorption and aid in animal digestion. They are bitter to taste and so, can reduce plant palatability or even imbue them with life threatening animal toxicity.\(^{43}\) There is tremendous, commercially driven promotion of saponins in traditional medicine preparation,\(^{44}\) where oral administration might be expected to lead the hydrolysis of glycosides from terpenoid and obviation of many toxicity associated with the intact molecule. Saponin protects the plant against microbes fungi and viral diseases.\(^ {45}\) Reported that, saponins had expectorant action which is very useful in the management of upper respiratory tract inflammation and Saponins have been found to possess hypocholesterolemic property for the control of high blood lipids.\(^ {46-47}\) Steroids are present in *Cyperus rotundus*, *Fimbristilis monostachya*, *Kyllinga monoceps*, *Kyllinga triceps* and *Sclaria lithosperma*. Steroids are present in grass *Cyperus rotundus*,\(^ {25}\) *Cymbopogon citrates*,\(^ {29}\) *Sacchrum spontaneum*\(^ {22-26}\) It should be noted that steroidal compounds are of importance and of interest in pharmacy due to their relationship with sex hormones.\(^ {48}\)

**Figure 3:** Quantification analysis of phenol content from grasses of cyperaceae

Tannins are present in six plants among selected species. Maximum content found in *Cyperus rotundus* followed by *Kyllinga monoceps*, which are also reported in *Cyperus rotundus*,\(^ {25}\) *Cymbopogon citrates* by;\(^ {21,29}\) *Sacchrum spontaneum* by;\(^ {26}\) *Imperata cylindrica* and *Pennicetum purpureum*.\(^ {27,28}\) Tannins contribute property of astringency i.e fasten the healing of wound and inflamed mucous membrane and have receive considerable attention in the fields of nutrition, health and medicine, largely due to their physiological activity, such as antioxidant, antimicrobial and anti-inflammatory properties. Herbs that have tannins as their main component are astringent in nature and are used for treating intestinal disorders such as diarrhea and dysentery.\(^ {49}\) Tannins and tannic acid own their stringent action to the fact that they precipitate protein and render them resistant to attack by proteolytic enzymes, internally they form a pellicle of coagulated protein over the lining of the alimentary tract.

Terpenoids are present in *Cyperus diffornis* and *Kyllinga monoceps*. Terpenoids which are attributed for analgesic and anti-inflammatory activities. The results revealed that *Cyperus rotundus* may be the best source for anti microbial, anti carcinogenic, anti inflammatory and increase in milk production among twenty selected species as it is rich in phenols and saponins.

**Figure 4:** Quantification analysis of saponin content from grasses of cyperaceae

**Figure 5:** Quantification analysis of tannin content from grasses of cyperaceae

**CONCLUSION**

The species of cyperaceae screened for phytochemical constituents seemed to have the potential to act as a source of useful drugs and also to improve the health status of the animals as a result of the presence of various compounds that are vital for good health. These can be incorporated in other foods as neutraceuticals for effective and proper metabolism as well as for the maintenance of good physiological state in man and animals. The study has revealed that the *Cyperus*
rotundus, Kyllinga monoecea, Paspalidium flavidum and Scelaria lithosperma grass species posses certain medicinal values is due to their phytochemical contents which can be utilized in the treatment of many diseases and also be explored for use in pharmaceutical industries, food preparation, and also in areas like hide and skin, cosmetics and raw materials for other products. From the above studies, it is concluded that the grass species posses medicinal values represents new sources of pharmaceutical industries with stable, pharmacologically active secondary metabolites which can be used as healers in the field of medicine. Flavonoids, alkaloids and steroids were found to be present as active constituents in the plant extracts. These extracts can be used for the treatment of many infectious diseases like diarrhea, dysentery, typhoid, pneumonia and other pathogenic disorders. However, further research is required to establish the in vivo activities and therapeutic index of these plants with respect to the management of various pathogenic diseases and improve the health of livestock.

Acknowledgement: Authors are grateful to UGC for financial assistance.

REFERENCES


Source of Support: Nil, Conflict of Interest: None.