INTRODUCTION

Aminoglycoside antibiotics have long been employed as antibacterial remedy, particularly against gram negative bacterial infections since the beginning of twentieth century.1,2 Besides their beneficial effects, aminoglycoside possess considerable side effects. The most common adverse effects are nephrotoxicity and ototoxicity.3 Among aminoglycosides, gentamicin (GM) is considered highly nephrotoxic agent.4 It damages the tubular cells lacking morphological changes in glomerular structures.5 The exact mechanism involved with GM-induced cell injury is not clearly understood but it is reported that gentamicin provokes free radical generation that implicates a variety of pathological processes.5 Moreover, reactive oxygen species (ROS) is supposed to an important mediator in gentamicin-induced nephrotoxicity.6 ROS bind to some macromolecules leading to cellular injury and necrosis through several mechanisms such as protein denaturation, peroxidation of membrane lipids, and DNA damage.7,8 Many attempts have been made and a variety of compounds have been used successfully to combat GM-induced nephrotoxicity.9,10

Ancient literature has prescribed various herbs for the treatment of kidney diseases. Global estimates show that 80% of about 4 billion world population cannot afford synthetic pharmaceutical products, hence depend upon traditional medicines derived from plant origins.11 Plants have effectively been used against a variety of diseases worldwide since the beginning of mankind.12 Traditional system of medicine continues to practice today. In the past few years, many researchers13-16 have investigated a number of plants used traditionally by indigenous healers and herbalists to support renal functions or treat kidney disorders. Several hundred herbs and plants are found helpful against renal disturbances.16

Foeniculum vulgare (F. vulgare) Mill is an aromatic plant belonging to “Apiaceae” family, used as culinary spice and traditional medicine. The fennel of the plant primarily contains monoterpenes, fenchone limonene, sterols, coumarines, piperitone, piperitone oxide, chlorogenic acid and caffeic acid. Moreover, F. vulgare also possesses camphor and aliphapinen with free radical scavenging activity. In addition, essential oils of fennel provide unique aroma, taste and acquire antibacterial, antifungal, relaxant, estrigenic, analgesic and anti-inflammatory actions. Fruits of the plant have diuretic, analgesic, antipyretic and antioxidant activities.17

Solanum nigrum (S. nigrum) Linn is a medicinal branched herb belongs to the family "Solanaceae" and have
beneficial effects against cancer, ulcer, and microbial infections. It has the ability to eliminate hydroxyl radicals by preventing oxidative damage and possesses antiseptic, antispasmodic, immunomodulating and anticonvulsant activities. A number of essential phytoconstituents are present in \textit{S. nigrum} that induce biological responses. One of the important phytoconstituent is steroidal saponins; which have antihyperlipidemic action by reducing blood cholesterol. In addition, 150 KDa glycoproteins is another vital constituent and provoke the activities of superoxide dismutase, catalase, glutathione peroxidase. Moreover, some researchers26,29 have revealed the cholesterol lowering property of glycol proteins and free radical eliminating activity of this plant.

Several pharmacological uses of the \textit{F. vulgare} and \textit{S. nigrum} have been described in the literature17,20,21 but no any study exists regarding its nephroprotective activity. Therefore, the present study has been planned to evaluate the nephroprotective effects of aqueous extracts of seeds (\textit{F. vulgare}, fruits and \textit{S. nigrum}) and their mixture with different doses against gentamicin-induced nephrotoxicity. We attempted to test and compare the possible nephroprotective activity if any, with Silymarin: a known nephroprotective herbal drug. In addition, we have also examined serum urea and creatinine levels in order to estimate renal function and malondialdehyde (MDA) and catalase levels to evaluate oxidative and antioxidative status.

MATERIALS AND METHODS

Collection and identification of plants

The fruits of \textit{S. nigrum} and \textit{F. vulgare} seeds were procured from local market of Faisalabad. Fruits and seeds were identified and authenticated by Dr. A. Rubina, Department of Botany, University of Agriculture, Faisalabad, Pakistan. Certificates of authentication were submitted in the Department of Physiology and Pharmacology, University of Agriculture, Faisalabad. Shade dried fruit’s extract were used for the study.

Preparation of Extract

Fruits were cut and shade dried and powdered to 40 mesh and stored in airtight container till further use. Methanolic extract was prepared with the help of Soxhlet apparatus and solvent was evaporated at 40°C in rotary evaporator.

Preliminary phytochemical analysis

The powdered \textit{F. vulgare} seeds and fruits of \textit{S nigrum} were investigated for qualitative determination of the following phytoconstituents.

Test for Tannins

Alcoholic ferric chloride solution (10%) was added in 2-3ml of methanolic extract as 1:1 ratio. Development of dark blue or greenish grey color of the solution was considered as positive for the presence of tannins.22

Test for Saponins

0.5ml of filtrate was added in 5ml of distilled water and solution was shaken vigorously. Persistence frothing indicated the presence of saponins.23

Test for Terpenoids

5ml of aqueous extract, 2ml of chloroform and 3ml of concentrated sulphuric acid was mixed. A reddish brown coloration of the interface formed suggested the presence of terpenoids.24

Test for Phenols

The sample was dissolved in water or a mixture of water and ethanol. Few drops of dilute ferric chloride solution were added to this mixture. Appearance of a red, blue, green or purple coloration indicated the presence of phenols.25

Test for Flavonoids

Flavonoids were tested by heating 1 g powdered sample with 10 ml ethyl acetate over a steam bath (40–50°C) for 5 min; filtrate was treated with 1 ml dilute ammonia. A yellow coloration demonstrated positive test for flavonoids.26

Test for Glycoside

2ml filtrate was mixed with 1ml of glacial acetic acid, 1ml of ferric chloride and 1ml of concentrated sulphuric acid. Indication of green-blue color suggested the presence of glycosides.23

Test for Ascorbic Acid

2ml of 2% sample solution (w/v) was mixed with 2ml of water, 0.1g of sodium bicarbonate and 20mg of ferrous sulphate. Mixture was shaken and allowed to stand; a deep violet color was appeared; 5ml of 1M sulphuric acid was then added, disappearance of this color confirmed the positive result.27

Test for Reducing Sugars

Fehling solution was added as a test reagent to the sample. Appearance of a radish brown precipitate of cuprous oxide indicated the presence of combine reducing sugars.25

Test for Steroids

2 ml of acetic anhydride and 2 ml of concentrated sulphuric acid was added to 1 ml of extract. Change in color from blue to green indicated the presence of steroids.24

Test for Total Sugars

Molish test was performed for the detection of sugar. 3 ml of the aqueous extract was added to 2 ml of Molisch’s reagent and the resulting mixture was shaken properly. 2 ml of concentrated \(\text{H}_2\text{SO}_4\) was then poured carefully down the side of the test tube. Formation of a red or dull violet color at the interphase of the two layers was indicative of positive test.25
Test for Alkaloids

Alkaloid detection was carried out by extracting 1 g powdered sample with 5 ml methanol and 5 ml of 2N HCl; and then treating the filtrate with Meyer’s and Wagner’s reagents. The sample was scored positive on the basis of turbidity or precipitation.26

Drug

Commercially available preparation of gentamicin, Gentacin® (Gentamicin sulphate, 80mg/2ml) manufactured by Abbott Laboratories was used for the experiment.

Animals

Fifty four adult male healthy albino rabbits were purchased from the local market of Faisalabad. The animals were housed in animal room at the department of Physiology and Pharmacology, University of Agriculture, Faisalabad. The care and use of the laboratory animals were performed in accordance with the guidelines and under the approval from the Animal Ethics Committee (AEC) of the university. Animals were acclimatized to the experimental room of department of Physiology and Pharmacology having ambient temperature (23±2°C), controlled humidity (55±5%) conditions, and 12:12 hour light and dark cycle. Animals were caged individually and fed seasonal fodder till the completion of experiment. Drinking water was provided ad libitum and feed was offered twice a day (morning and evening). Except normal control group, all animals of other groups were administered Gentacin® 80mg/kg body weight intra-peritoneal for 21 days.

Arrangement of animals into groups

Fifty four animals were divided into nine groups; each group consisted of 6 animals and they received the treatment as follows:

Group-I: Normal control group

Group-II: Gentamicin-administered (80mg/kg), untreated control

Group-III: Treated control (Gentamicin 80mg/kg + Silymarin 200mg/kg/oral)

Group-IV: Treated with aqueous extract of F.Vulgare 250mg/kg/oral + Gentamicin 80mg/kg

Group-V: Treated with aqueous extract of S. nigrum 250mg/kg/oral + Gentamicin 80mg/kg

Group-VI: Treated with aqueous extract of Mixture 250mg/kg/oral + Gentamicin 80mg/kg

Group-VII: Treated with aqueous extract of F.Vulgare 500mg/kg/oral + Gentamicin 80mg/kg

Group-VIII: Treated with aqueous extract of S. nigrum 500mg/kg/oral + Gentamicin 80mg/kg

Group-IX: Treated with aqueous extract of Mixture 500mg/kg/oral + Gentamicin 80mg/kg

Biochemical estimation

2 ml of blood samples were drawn at 21st day from the jugular vein of rabbits of all experimental groups. Blood samples were centrifuged at 1507g for 15 minutes. Serum were separated in small aliquots and stored at -20°C. Concentration of creatinine, urea and albumin were determined from serum samples by using commercially available kits (DiaSys Diagnostic Systems GmbH Alte Strasse (9) 65558 Holzheim Germany).

Histopathological analysis

At 21st day, three animals from each group were sacrificed. Parts of kidneys were embedded in formalin, processed in graded ethanolic concentrations and fixed in paraffin blocks. Morphometric measurements were completed on Olympus PM – 10ADS automatic light microscope (Olympus optical Co., Tokyo, Japan) with a 40X objective and calibrated ocular micrometer.

Statistical analysis

The data are reported as means ± standard error of the mean (SEM). Statistical analysis was performed by one way analysis of variance (ANOVA), Duncan Multiple Range Test (DMRT), using SPSS® for Windows computing program (version 17.0). P<0.01 was considered statistically significant.

RESULTS

Phytochemical investigation of F. vulgare seeds and fruits of S nigrum revealed the presence of various bioactive constituents (Table-1). Both plants have almost all the major phytoconstituents except glycosides in S. nigrum and steroids in F. vulgare.

Table 1: Preliminary phytochemical analysis of F. vulgare and S. nigrum

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>F. vulgare</th>
<th>S. nigrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenols</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Glycosides</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Free reducing sugar</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Total Sugars</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

**Strong positive, Trace, Negative

Serum creatinine

Serum creatinine was significantly increased (1.06±0.07 mg/dl) in the GM-treated renal injury group, when compared to the control group (0.65±0.01 mg/dl; P<0.01) (Table 2). The increase induced by GM was completely attenuated by all the treated groups, displaying their
nephroprotective action. However, group-IX had the numerically lowest value of serum creatinine as compared to control group, indicating their improved nephroprotective activity.

Table 2: Effect of *Foeniculum vulgare*, *Solanum nigrum* and their mixture on serum levels of urea, creatinine, albumin, plasma malondialdehyde and catalase in albino rabbits

<table>
<thead>
<tr>
<th>Groups</th>
<th>Creatinine (mg/dl)</th>
<th>Urea (mg/dl)</th>
<th>Albumin (g/dl)</th>
<th>Malondialdehyde (MDA) nmol/L</th>
<th>Catalase (KU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-I (Normal Control)</td>
<td>0.65±0.01<sup>BC</sup></td>
<td>0.63±1.27<sup>CD</sup></td>
<td>4.70±0.14<sup>E</sup></td>
<td>6.02±0.17<sup>F</sup></td>
<td>48.14±0.84<sup>A</sup></td>
</tr>
<tr>
<td>Group-II GN (80mg/kg)</td>
<td>1.06±0.07<sup>A</sup></td>
<td>85.67±3.73<sup>B</sup></td>
<td>2.80±0.14<sup>E</sup></td>
<td>18.36±1.60<sup>A</sup></td>
<td>28.23±2.10<sup>H</sup></td>
</tr>
<tr>
<td>Group-III GN S (80+200 mg/kg)</td>
<td>0.75±0.04<sup>B</sup></td>
<td>60.00±2.54<sup>CD</sup></td>
<td>4.50±0.17<sup>BC</sup></td>
<td>6.19±0.22<sup>F</sup></td>
<td>47.93±0.79<sup>A</sup></td>
</tr>
<tr>
<td>Group-IV GN + FV (80+250mg/kg)</td>
<td>0.75±0.03<sup>B</sup></td>
<td>68.04±1.80<sup>B</sup></td>
<td>3.50±0.20<sup>D</sup></td>
<td>12.07±0.89<sup>C</sup></td>
<td>36.12±0.93<sup>F</sup></td>
</tr>
<tr>
<td>Group-V GN + SN I (80+250mg/kg)</td>
<td>0.71±0.02<sup>B</sup></td>
<td>67.58±1.60<sup>BC</sup></td>
<td>3.50±0.19<sup>D</sup></td>
<td>14.15±1.16<sup>B</sup></td>
<td>34.01±1.55<sup>C</sup></td>
</tr>
<tr>
<td>Group-VI GN + Mix-I (80+250mg/kg)</td>
<td>0.68±0.03<sup>B</sup></td>
<td>62.75±1.83<sup>C</sup></td>
<td>4.68±0.15<sup>B</sup></td>
<td>10.25±0.80<sup>D</sup></td>
<td>37.87±1.56<sup>E</sup></td>
</tr>
<tr>
<td>Group-VII GN + FV II (80+500mg/kg)</td>
<td>0.65±0.02<sup>B</sup></td>
<td>56.50±2.70<sup>E</sup></td>
<td>4.29±0.15<sup>C</sup></td>
<td>8.02±0.62<sup>E</sup></td>
<td>42.04±0.95<sup>C</sup></td>
</tr>
<tr>
<td>Group-VIII GN + SN II (80+500mg/kg)</td>
<td>0.73±0.07<sup>B</sup></td>
<td>58.21±2.43<sup>D</sup></td>
<td>4.24±0.15<sup>C</sup></td>
<td>10.16±0.60<sup>D</sup></td>
<td>40.01±1.11<sup>D</sup></td>
</tr>
<tr>
<td>Group-IX GN + Mix-II (80+500mg/kg)</td>
<td>0.58±0.02<sup>C</sup></td>
<td>56.21±2.45<sup>E</sup></td>
<td>5.00±0.20<sup>A</sup></td>
<td>7.07±0.36<sup>EF</sup></td>
<td>45.80±0.99<sup>B</sup></td>
</tr>
</tbody>
</table>

^A-^H Means sharing with superscripts within a column do not differ (P<0.01), GN= Gentamicin, S= Silymarin, FV= F. Vulgare, SN= S. nigrum, M= Mixture

Serum urea levels

GM treatment for twenty one days resulted in significant increase in serum urea level compared to control rabbits (Table 2). However, elevations in the blood urea were significantly (P<0.01) attenuated by all the treated groups indicating their nephroprotective activities. Group-VII and group-IX exhibited more positive nephroprotective effects having significantly (P<0.01) lower values of urea level when compared to normal values.

Albumin

Albumin concentration was significantly (P<0.01) lower in GM-treated group as compared to normal control group (Table 2). All the treated groups significantly reversed the lowered values of albumin induced by GM indicating their positive effects to renal damage. However, plants mixture at higher doses (group-IX) exhibited substantial higher values of albumin, whereas group-IV and group-V showed significantly (P<0.01) lower values of albumin in comparison to normal control group. Plant extracts alone at higher doses (group-VII) and (group-XIII) also displayed considerable lower concentration of albumin as compared to normal control group though group-III and group-VI did not differ significantly when compared to control values.

MDA

Level of MDA was significantly increased (18.36±1.60 nmol/L) in the GM-treated group, when compared to the control group (6.02±0.17 nmol/L) (Table 2). Higher values of MDA indicate the oxidative stress in GM treated group. The increase in MDA level was completely attenuated by group-III followed by group-VII, group-XIII, group-IV, and group-V respectively. However, group-VI had the similar values as compared to group-VIII and group-IX did not differ considerably (P<0.01) when compared to group-III and group-VII.

Catalase

GM treated group revealed significantly (P<0.01) lower values of catalase as compared to normal control group (Table 2). All the treated groups significantly (P<0.01) reversed the lower values of catalase induced by GM administration indicating their antioxidant activities. Group-III had the considerable higher concentration of catalase, followed by group-IX, group-VII, group-VIII, group-IV and group-V respectively as compared to normal control group though group-III did not vary considerably when compared to control values.

Histopathological analysis

The histopathological changes in kidneys in all groups are summarized in Table 3.
Light microscopic examination of kidneys from control and Mix-II (group-IX) rabbits showed no structural alterations in renal tissues (Fig. A and Fig. D). Massive and diffuse cell necrosis was observed in the proximal tubules of kidneys from rabbits injected with gentamicin. In addition, the lumens of these tubules were filled with degenerate and desquamated epithelial cells and hyaline casts. Pyknotic and karyolytic changes were seen in the nucleus. Severe inflammatory infiltrate in the form of mononuclear cells were observed in the renal sections of this group (Fig. B). Kidney specimens from rabbits treated with GM and Silymarin (group-III) revealed significant improvement in glomerul and renal tubules, evidenced by preservation of tubular histology with mild coagulative necrosis compared with the GM treated group (Fig. C).

DISCUSSION

In spite of age, race, environmental and geographical variations, nephropathy is one of the important health hazards all over the world. The etiology behind this renal problem is widely ranging from substance induced to physiological and various metabolic complications, grading the nephropathy amongst the 10th leading causes of death throughout the world. Medical literature has described an increase incidence of nephrotoxic acute renal failure (ARF), especially with antibiotics use being the major cause, among which the aminoglycosides are most common. Elevation of urea and creatinine levels in renal failure (ARF), especially with antibiotics use being described an increase incidence of nephrotoxicity. The main offender is the aminoglycoside antibiotic gentamicin, which is one of the most commonly used for the treatment of urinary tract infection.

GM nephrotoxicity is manifested clinically as nonoliguric renal failure, with a slow rise in serum creatinine and hypoosmolar urinary output developing after several days of treatment. At physiologic pH, the drug is largely charged and water soluble, and therefore it is practically unable to diffuse through biologic membranes. In addition, suppression of free radical defense mechanism has also been observed because selective accumulation of gentamicin in kidney can induce oxidative stress leading to lipid peroxidation. It can mediate the generation of reactive oxygen species (ROS) mostly in mitochondria that can induce renal injuries. Morphologically, cellular necrosis, large lysosomes and myeloid bodies have been observed in the kidney. Even in the absence of major changes in membrane permeability, the failure of plasma membrane pumps will cause potential changes in thecation homeostasis of the cell e.g. Na-K-ATPase and Ca-ATPase pumps.

Many researchers have reported the renal toxicity of GM at dose rate of 100 mg/kg intra-peritoneal. It is suggested that after glomerular filtration, GM is actively transported into proximal tubules, here it accumulates and damages the tubular cells, hence; alters the renal circulation leading to reduced glomerular filtration rate (GFR). The major etiology behind this complication may be induction of oxidative stress which is the most common pathogenic inducer. In addition, another possible mechanism regarding the action of gentamicin is that gentamicin may increase the production of hydrogen peroxide (H₂O₂), and it is well known that oxygen and H₂O₂ causes the contraction of mesangial cells, modify the filtration surface area and ultimately reduce the GFR. Oxygen radical interacts with nitric oxide (NO): a vasodilator, and forms a cytotoxic oxidant species i.e. peroxynitrite. This inactivation of NO by oxygen might be responsible for decrease in the GFR but the exact mechanism is not well known. However, GM-induced damage confers high level of creatinine in serum.

The results of gentamicin-induced nephrotoxicity in the present study are in line with those documented previously. GM activates the platelets activation factor causing local vasoconstriction and thus restricts the renal blood flow and ultimately GFR. Many studies support that oxidative stress is the major contributor in GM-induced nephrotoxicity.

Urea is the nitrogen containing end product of protein catabolism. The concentration of urea is elevated when GFR is markedly decreased in renal pathies. Moreover, urea concentration begins to rise only after parenchymal tissue damage. Thus, serum urea concentration is sometimes considered a more reliable renal function predictor than serum creatinine. In this study, urea concentration is significantly (P<0.01) increased in GM-

Table 3: Histopathological features as seen in the kidney in the gentamicin model

<table>
<thead>
<tr>
<th>Histopathological features</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
<th>Group VI</th>
<th>Group VII</th>
<th>Group VIII</th>
<th>Group IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerular congestion</td>
<td>-</td>
<td>+++++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Peritubular congestion</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Epithelial desquamation</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blood vessel congestion</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inflammatory cells</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Necrosis</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Connective tissue proliferation</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Peritubular dilatation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

[]: normal; (+): little effect; (++): appreciable effect; (+++): severe effect*

Available online at www.globalresearchonline.net
treated group as compared to normal control group. The results of present study are in line with those reported previously.1,34,35 \textit{F. vulgare} at high doses (group-VII) alone and mixture of \textit{F. vulgare} and \textit{S. nigrum} at high doses (group-IX) exhibited nephroprotective effects by significantly lowering the serum urea level. The possible reason behind the serum urea accumulation may be an increase rate of serum urea production than the clearance rate.

Creatinine derives from endogenous sources by tissue creatinine breakdown and its clearance enables a quite good estimation of the GFR. Plasma creatinine concentration is an important index than the urea concentration in the first phases of kidney disease. In the present study, mean serum concentration of creatinine increased significantly (P<0.01) in GM treated group as compared to normal control group. All the medicated groups displayed nephroprotective action by lowering the serum creatinine level when compared to group-II values.

Majority of the medicinal plants have some organic compounds which provide definite physiological functions; these bioactive substances include tannins, alkaloids, flavonoids, saponins, glycosides, carbohydrates, etc. Data revealed the presence of all the bioactive constituents in \textit{F. vulgare} and \textit{S. nigrum} except steroids and glycosides respectively. The phytoconstituents detected in the plant materials may be responsible for their nephroprotective activity. In addition, these bioactive molecules also possess antioxidant activity.36 \textit{F. vulgare} is a source of bioactive compounds (ascorbic acid, phenolics and terpenoids) with potential health promoting actions. Flavonoids are oxidized by radicals resulting in a more stable and less reactive radical. Flavonoids can also inhibit the activity of many enzymes such as xanthine oxidase, peroxidase and nitric oxide synthase, which are supposed to involve in free radical generation, thereby resulting in decreased oxidative damage of macromolecules. Herbal mixture of both plants alone exhibited varying degree of therapeutic effects in renal damage whereas combination of both plants mixture displayed synergistic effect.

Albumin is the main contributor to the plasma osmotic pressure and is synthesized in the liver. It helps in the transport of drugs, hormones and enzymes. Albumin level decreases in kidney disorders, malnutrition, increased fluid loss during extensive burns, and decreased absorption in gastrointestinal diseases.40 Hypoalbuminemia may result from impaired synthesis, loss through urine or feces, or increased catabolism.41 The results of albumin revealed that mean serum concentration of albumin (g/dl) decreased significantly (P<0.01) in GM treated group as compared to normal control group. These results are in accordance with the results42,43 which states that total protein content decreased possibly due to destruction of protein synthesizing subcellular structures in GM-induced nephrotoxicity. Moreover, increased free radical production and defective protein synthesis may be some other causes of decreased protein contents. On the other hand, significantly (P<0.01) higher values of albumin in group-IX exhibited its nephroprotective effects when compared to normal values. Similar protective studies of different extracts against GM have been reported previously.37,44,45

In the present study, MDA level was significantly increased whereas catalase level was decreased noticeably in GM treated group as compared to control group. It has been proposed that oxidative stress may be responsible for tubular damage. It is well known that the production of ROS causes cell damage due to cytotoxic action of oxygen and nitrogen derived free radical species. Lipid peroxidation (LP) has a relationship with the release of lysosomal enzymes. Hence, LP activates the phospholipases and removes the peroxidized lipid from the membrane.46 The oxidation of unsaturated fatty acids in biological membranes by free radical leads to a decrease in membrane fluidity and disruption of membrane structure and function.47 The present results confirm the earlier findings48 and concluded that GM administration caused severe damage to renal tissues most likely by ROS mediated mechanism as evident by decreased activities of antioxidant enzymes that led to increased lipid peroxidation (LP). In addition, a highly significant increase of lipid peroxidation activity was reported in this study, these observations are in agreement with those reported earlier.39

GM exposure to rabbits mediates the generation of ROS that could play a significant role in the progression of renal injuries including array of biomolecules such as membrane lipids, protein and nucleic acids particularly in some organelles like mitochondria and lysosomes of renal tissues. Increased propagation of ROS confers the peroxidation of attached polyunsaturated fatty acids to biomembranes. GM-induced lipid peroxidation impaired the cellular function and provokes necrosis. This evolution of ROS may stimulate the activation or expression of proinflammatory mediators which could contribute to progressive kidney damage induced by GM. Proinflammatory mediators have a critical role in mediating inflammation, apoptosis, and growth in disease. Activation of mediators, in response to oxidative stress may play a role in GM-induced nephrotoxicity by inducing synthesis of inflammatory substances (cytokines, growth factors, and adhesion molecules) that provoke kidney damage. Thus, blockage of proinflammatory mediators will be an effective approach for treatment of nephrotoxicity. GM also causes renal phospholipidosis via inhibition of lysosomal hydroxylase, such as sphingomylinase and phospholipidase in conjunction with oxidative stress leading to nephrotoxicity.

LP of renal tissues induced with GM was prevented in group-IX by significantly decreased MDA level whereas catalase activities were increased substantially as compared to group-II in dose dependant manner. Both \textit{F. vulgare} and \textit{S. nigrum} exhibited synergistic effect in mixture as compared to when treated alone in dose
related manner. As mixture, having strong antioxidant and cellular anti inflammatory properties improved the oxidant status. The nephroprotective activity of herbal mixture acting synergistically, may be due to the presence of phytochemicals like flavonoids, also its ability of antiinflammatory activity and antioxidant status. It is well acknowledged that many phenolic compounds, present in F. vulgare and S. nigrum, exert powerful antioxidant effects. Therefore, they could inhibit LP by scavenging ROS. The protective effect of F. vulgare and S. nigrum in the present study, against gentamicin induced nephrotoxicity is in harmony and supports the previous reports indicating the antioxidant potential.

GM induces conspicuous and characteristic changes in lysosomes of proximal tubular cells consistent with the accumulation of polar lipids (myeloid bodies). These changes are preceded and accompanied by signs of tubular dysfunctions or alterations (release of brush border and lysosomal enzymes; decreased reabsorption of filtered proteins). In current study, group II exhibited severe necrotic changes in the proximal convulated tubule. These include: pyknotic nuclei, hyperchromatic and massive dilation of the capillaries, massive tubular epithelial cell necrosis, karyorehexis and karyolytic changes in the nucleus, severe congestion with massive glomerulli tuft lobulation and necrosis. Increase in intracellular free oxygen radicals can initiate irreversible cellular injury process leading to tubular necrosis and tubular degeneration in renal tissues. Scavenging of free oxygen radicals prevent irreversible renal cell injury and necrosis.

Many studies proposed that mediation of reactive oxygen may have linked with degenerative tubular effects of gentamicin. In a study, reactive oxygen species have been identified as inducers of proximal tubular necrosis and acute renal failure in gentamicin-induced nephrotoxicity. In current study tubular necrosis, as a sign of irreversible injury in most sections examined from group II. F. vulgare and herbal mixture as an antioxidant inhibits lipid peroxidation and prevents renal cell injury. The results of the present study showed that F. vulgare and mixture treatment affected biochemical values in line to pathological findings.

CONCLUSION

The results of the present study showed that the aqueous extract of F. vulgare, S. nigrum and their mixture can offer protection against the deleterious renal side effects of gentamicin. According to the biochemical findings, which were supported by histopathological evidences, administration of mixture of F. vulgare and S. nigrum synergistically abolished nephrotoxic effects of gentamicin as compared to individual plants. The current study also suggests the possible mechanism for renal protection might be attributed for its free radical scavenging and antioxidant activity of its phenolics and flavonoids components. Phenolic compounds from dietary plants are known to be good scavengers of reactive oxygen species. In the past few decades, a considerable and consistent amount of evidences have demonstrated that F. vulgare and S. nigrum have antioxidant and anti-inflammatory properties. It is well known that all non-steroidal anti-inflammatory drugs inhibit prostaglandin E synthesis. Thus, it may be possible that F. vulgare and S. nigrum because of its anti-inflammatory activity can inhibit the biosynthesis of prostglandins. In addition, alkaloids have also been reported to strongly inhibit lipid peroxidation induced in isolated tissues via its antioxidant activity. The presence
of alkaloids could be the reason of protection offered by the plants possibly due to its ability to activate antioxidant enzymes. Therefore it is mandatory to conduct the chemical characterization to isolate and evaluate newer active phytoconstituents in order to develop the therapeutics that have a promising role in the treatment of renal dysfunction diseases induced by xenobiotics.

REFERENCES

9. Ali BH, Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research, Food and Chemical Toxicology, 11(41), 2003, 1447–1452.

27. Cuzzocrea S, Mazon E, Dugo L, Serraino I, Paola RD, Britti D, Sarro DA, Pierpaoli S, Caputi AP, Masini E,

Source of Support: Nil, Conflict of Interest: None.