A Study on Phytochemicals in *Bauhinia purpurea* L. Leaf and Flower

Krishnaveni Marimuthu¹, **Ravi Dhanalakshmi**²

¹Assistant Professor, Department of Biochemistry, Periyar University, Salem, Tamilnadu, India.
²M.Phil Student, Department of Biochemistry, Periyar University, Salem, Tamilnadu, India.
Corresponding author’s E-mail: krishnavenim2011@gmail.com

ABSTRACT

The present study was undertaken to evaluate the phytochemicals present in the *Bauhinia purpurea* L. leaf and flower. The samples *Bauhinia purpurea* leaf and flower were collected during the month of November-December 2013. The collected leaf and flower samples were allowed to shade dry and then powdered. Powdered Bauhinia leaf, flower samples were extracted with water and also hydrolyzed according to the standard prescribed protocol. Qualitative analysis showed positive result for carbohydrate, alkaloid, steroid, sterol, glycoside, saponin, flavonoid, tannin, phenolic compounds, flavonoid, protein, amino acid, fixed oil. The percent yield obtained with *Bauhinia purpurea* leaf was 29.57 whereas it was 20.20 with *Bauhinia purpurea* flower. Fluorescence study revealed that both the leaf and flower showed green fluorescence. The behavior of leaf and flower powder was negative for anthroquinone. The nutrients such as carbohydrate, protein and amino acids assessed quantitatively in leaf was 50.0 ±3.46mg/g, 05.19±0.23mg/g, 05.95±0.88mg/g, but in flower, the carbohydrate content was found to be 43.33±2.30mg/g. Similarly, the protein and amino acid content was 13.39±0.23mg/g, 00.59±0.17mg/g. The results showed that it is endowed with phytochemicals, nutrients which might find application in the treatment of diseases as curative agent.

Keywords: *Bauhinia purpurea*, Chemicals, Flower, Leaf, Nutrients.

INTRODUCTION

Bauhinia genus of family Cesalphiniacea consists of about 15 species that occur in India. Some of them are shrubs or trees, while a few are climbers. India is a developing country which is valued for diversity of species, genetic, habitat. In developing countries like India, flowers are used in all cultural activities at all time. Flowers are broadly known and used for their beauty as well as the color they radiate. Medicinal plants find its application in the treatment of diseases since the dawn of world in the form of traditional medicine. The plant *Bauhinia purpurea* is a moderate evergreen tree used by tribes of India as cattle feed. Various biological activities are ascribed to bauhinia species. *B.purpurea* a most important species used to treat several ailments in traditional system of medicine. *B.purpurea* was reported for its antidiarrhoeal, anticancer, thyroid gland stimulating properties, since, the flowers are rich in phytoconstituents, it was considered as a principle source in pharma and nutraceutical industries. Historically, all valuable medicinal preparations were derived from plants, whether in the simple form of plant parts or more complex form of crude extracts. Hence, the present study was aimed to experimentally analyze the phytochemicals present in the dry sample of *Bauhinia purpurea* leaf and flower.

MATERIALS AND METHODS

Plant collection and identification

The samples *Bauhinia purpurea* leaf and flowers were collected from Navodaya academy senior secondary school located at Namakkal, Namakkal District, Tamil Nadu, India, during the month of November-December, 2013. The collected leaves and flowers were cleaned thoroughly and dried under the shade. Once the drying process is complete, the dried leaves, flowers were ground to powder using blender for further use. The plant was identified by Dr. B. Sankar, Head and Assistant Professor, Department of Botany, Poompuhar College, Tamil Nadu, India.

![Bauhinia purpurea](image)

Aqueous extract preparation

Aqueous extract was prepared by dissolving 15g of *Bauhinia purpurea* leaf and flower powder in 200ml of distilled water each separately. The mixture was heated on a hot plate with continuous stirring at 30-40°C for 20minutes. Then the water extract was filtered through filter paper. The filtrate was kept in a beaker and allowed to dry by heating in a boiling water bath. The gummy residue obtained was used for the analysis of percentage...
yield, and the remaining marc left was extracted with water and used for qualitative analysis.

Phytochemical analysis

The extract was tested for the presence of bioactive compounds by adopting standard procedures12,13 fluorescence analysis,14 behavior of drugs powder with different chemical reagents.15

Test for carbohydrate

Molisch’s test

To the extract added few drops of alcoholic alpha naphthol solution followed by few drops of concentrated sulphuric acid along the sides of the test tube. Purple or violet colored ring formed at the junction showed positive result.

Fehling’s test

To the extract added equal amount of Fehling’s A and B solution, heat the tubes in a boiling water bath. Brick red precipitation of cuprous oxide formation confirmed the presence of reducing sugar.

Benedict’s test

To the extract added Benedict’s reagent and the contents in the tubes were heated in a boiling water bath. Formation of red precipitate indicated positive result.

Test for alkaloids

Wagner’s test

To the extract added few drops of iodine solution in potassium iodide. Reddish brown precipitate showed positive result.

Hager’s test

To the extract added few drops of saturated solution of picric acid. Yellow color precipitation showed positive result.

Test for steroids and sterols

Libermann-Burchard test

To the extract added 2ml chloroform, 10 drops of acetic anhydride, 2 drops of concentrated sulphuric acid. Positive result was confirmed by the formation of bluish red to cherry red color in chloroform layer.

Salwoski test

To the extract, few drops of chloroform were added followed by concentrated sulphuric acid. Presence of bluish red to cherry red color denoted positive result.

Test for Glycosides

Legal test

To the extract added pyridine and sodium nitroprusside. Positive result showed pink to red color formation.

Baljet test

To the extract added picric acid. Appearance of orange color showed positive result.

Test for saponins

Foaming test

Foams produce when the extract was mixed with water.

Test for flavonoids

Shinoda test

To the extract added magnesium turnings, 1-2 drops of concentrated hydrochloric acid. Appearance of red color indicated positive result.

Zinc hydrochloride test

To the extract added zinc dust, 1-2 drops of concentrated hydrochloric acid. Appearance of red color indicated positive result.

Test for tannin and phenolic compounds

Ferric chloride test

To the extract added ferric chloride. Appearance of greenish black color showed positive result.

Potassium dichromate test

To the extract added potassium dichromate solution. Positive result was confirmed by the formation of brown precipitate.

Gelatin test

To the extract added 1% gelatin solution containing 10% sodium chloride. Formation of white precipitate showed positive result.

Test for protein and amino acids

Biuret test

To the extract added 4% sodium hydroxide followed by few drops of 15% copper sulphate. Appearance of purple color showed positive result.

Ninhydrin test

Bluish violet color was formed when a solution of ninhydrin was added to the extract and heated.

Heat test

The extract was heated by allowing it to boil in a water bath. Presence of coagulation showed positive result.

Test for fixed oil

Copper sulphate test

Blue color was observed when the extract was mixed with 1ml of 1% copper sulphate and 10% sodium hydroxide.
Quantitative analysis of phytonutrients

Total carbohydrates, proteins, and amino acids were performed according to the standard prescribed methods.

Estimation of carbohydrate

The total carbohydrate was estimated by Anthrone method. 1mg of Bauhinia purpurea leaf and flower powder was hydrolyzed to simple sugars by keeping it in a boiling water bath for three hours with 5ml of 2.5N HCl and cooled to room temperature. After neutralizing, the contents were centrifuged and 0.1ml of supernatant was used for the analysis. To the sample add 4ml of anthrone reagent and the contents were heated in a boiling water bath for 8minutes. The tubes were cooled and read at 630nm using spectrophotometer Schimadzu-Model UV 1800. The standards were developed with Bovine serum albumin. Standard graph plotted was used to calculate the concentration of carbohydrate present in the extract.

Estimation of protein

The total protein was estimated by Lowry’s method. To 0.1ml of extract added 2ml of alkaline copper reagent, mixed well and incubated for 10minutes. After the incubation period 0.2ml of Folin ciocalteau reagent (diluted in the ratio of 1:2) was added and allowed for 30 minutes incubation, then read at 660nm using spectrophotometer Schimadzu-Model UV 1800. The standards were developed with Bovine serum albumin. Standard graph plotted was used to calculate the concentration of protein present in the extract.

Estimation of aminoacid

The amino acid present was estimated by Ninhydrin method. To 0.1ml of extract added 1ml of ninhydrin solution dissolved in ethanol. The test tube was covered with a piece of paraffin film to avoid the loss of solvent due to evaporation. With gentle stirring, the contents were allowed to react at 80-100°C for 4-7minutes and then cooled. The color developed was read at 570nm. Tyrosine was used for developing standard. From the standard graph obtained the amino acid content in the extract was calculated.

Statistical Tool

Each experiment was carried out in triplicate and the results were given as Mean ± Standard deviation. The Mean and Standard deviation (S) was calculated by using the following formula: Mean = Sum of x values /n

(Number of values), \(s = \sqrt{\frac{\sum (X-M)^2}{n-1}} \)

RESULTS AND DISCUSSION

The percentage recovery of the aqueous extract obtained was calculated and expressed in Table 1.

Table 1: Percentage yield of Bauhinia purpurea L. leaf, flower powder (Aqueous extract)

<table>
<thead>
<tr>
<th>Name of the sample used</th>
<th>Weight taken for extraction</th>
<th>Initial weight of the beaker (gm)</th>
<th>Final weight of the beaker (gm)</th>
<th>Weight of the extract (gm)</th>
<th>% recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauhinia purpurea leaf powder</td>
<td>15g in 200ml</td>
<td>180.9209</td>
<td>185.2521</td>
<td>4.33</td>
<td>29.57</td>
</tr>
<tr>
<td>Bauhinia purpurea flower powder</td>
<td>14.6425g in 200ml</td>
<td>169.4589</td>
<td>172.4891</td>
<td>3.03</td>
<td>20.20</td>
</tr>
</tbody>
</table>

Table 2: Behavior of Bauhinia purpurea leaf, flower powder with different chemicals

<table>
<thead>
<tr>
<th>Tests</th>
<th>Observation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder + Picric acid</td>
<td>Yellow color</td>
<td>Presence of alkaloid</td>
</tr>
<tr>
<td>Powder + Conc. H₂SO₄</td>
<td>Reddish brown color</td>
<td>Presence of steroids</td>
</tr>
<tr>
<td>Powder + Aqueous FeCl₃</td>
<td>Green influoresence</td>
<td>Presence of flavonoids</td>
</tr>
<tr>
<td>Powder + Iodine solution</td>
<td>Brown color</td>
<td>Absence of starch</td>
</tr>
<tr>
<td>Powder + Aqueous 5% KOH</td>
<td>Brown color</td>
<td>Presence of anthroquinone</td>
</tr>
<tr>
<td>Powder + NaOH</td>
<td>Yellow color</td>
<td>Presence of flavonoids</td>
</tr>
<tr>
<td>Powder + Aqueous AgNO₃</td>
<td>White precipitate</td>
<td>Presence of protein</td>
</tr>
</tbody>
</table>

The yield in percentage was found to be 29.57 with Bauhinia purpurea leaf whereas, it was 20.20 with Bauhinia purpurea flower. (Table 1) The net weight used for the experiment was 14.6425gm. The weight of the dry extract obtained with respect to leaf was 4.33gm and 3.03gm for flower after the completion of drying process.

Analysis of Bauhinia purpurea leaf, flower powder for its behavior

The results of analysis of Bauhinia purpurea leaf, flower powder for its behavior is shown in Table 2.
The results of *Bauhinia purpurea* leaf, flower powder when tested with different chemicals showed positive results for alkaloid, steroid, flavonoid, starch, anthroquinone, protein. (Table 2)

Fluorescence Analysis

Table 3: Fluorescence analysis of *Bauhinia purpurea* leaf, flower (Aqueous extract)

<table>
<thead>
<tr>
<th>Name of the aqueous extract</th>
<th>Day light</th>
<th>UV light</th>
</tr>
</thead>
<tbody>
<tr>
<td>leaf</td>
<td>Pale brown</td>
<td>Green</td>
</tr>
<tr>
<td>flower</td>
<td>Pale brown</td>
<td>Green</td>
</tr>
</tbody>
</table>

The results of fluorescence analysis showed green fluorescence for both the leaf and flower samples studied. (Table 3)

Phytochemical analysis

The results of phytochemical analysis were shown in Table 4.

Table 4: Phytochemicals in *Bauhinia purpurea* leaf and flower (Aqueous extract)

<table>
<thead>
<tr>
<th>Name of the test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test for carbohydrate</td>
<td>+++</td>
</tr>
<tr>
<td>Test for alkaloid</td>
<td>++</td>
</tr>
<tr>
<td>Test for steroid and sterol</td>
<td>+</td>
</tr>
<tr>
<td>Test for Glycoside</td>
<td>+++</td>
</tr>
<tr>
<td>Test for saponin</td>
<td>+</td>
</tr>
<tr>
<td>Test for flavonoid</td>
<td>+</td>
</tr>
<tr>
<td>Test for tannin and phenolic compound</td>
<td>+++</td>
</tr>
<tr>
<td>Test for protein and amino acid</td>
<td>+++</td>
</tr>
<tr>
<td>Test for fixed oil</td>
<td>+++</td>
</tr>
</tbody>
</table>

+Slight changes, ++ Moderate, +++ Stronger reactions

The qualitative analysis showed strong positive reaction for most of the phytochemicals studied in both leaf and flower of *Bauhinia purpurea*. But only slight changes were observed with flavonoid, saponin, steroid, sterol for *Bauhinia purpurea* leaf. (Table 4)

Table 5: Phytonutrients in *Bauhinia purpurea* leaf and flower (Aqueous extract)

<table>
<thead>
<tr>
<th>Phytonutrients assessed</th>
<th>Nutrient content (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td></td>
</tr>
<tr>
<td>Total carbohydrate</td>
<td>50.0 ± 3.46</td>
</tr>
<tr>
<td>Total protein</td>
<td>05.19 ± 0.23</td>
</tr>
<tr>
<td>Amino acids</td>
<td>05.95 ± 0.88</td>
</tr>
<tr>
<td>Flower</td>
<td></td>
</tr>
<tr>
<td>Total carbohydrate</td>
<td>43.33 ± 2.30</td>
</tr>
<tr>
<td>Total protein</td>
<td>13.39 ± 0.23</td>
</tr>
<tr>
<td>Amino acids</td>
<td>00.59 ± 0.17</td>
</tr>
</tbody>
</table>

Values are Mean ± SD for three experiments

Phytonutrients Analysis

The phytonutrients estimated were tabulated in Table 5. Among the nutrients assessed, the carbohydrate content was higher for leaf (50.0±3.46mg/g) when compared to flower (43.33±2.30mg/g). But, the protein content was higher in flower (13.39±0.23mg/g) on comparison with leaf (05.19±0.23mg/g). Likewise, the amino acid content was higher for leaf (05.95±0.88mg/g) than flower (0.59 ± 0.17mg/g). The antioxidant activity of *Bauhinia purpurea* leaf and flower was reported by Krishnaveni et al.19,20

CONCLUSION

Developing country like India, herbal formulations forms a basis in primary health care for about 80% of the population as it gives fewer side effects due to its better compatibility with human body. From our results, it is understood that leaf and flower of *Bauhinia purpurea* contains chemical constituents, nutrients when tested qualitatively and quantitatively. Flower contains protein in higher concentration. While, the carbohydrate, amino acid content was higher in leaf. This shows that it might have a therapeutic potential which aids in the maintenance of good health.

Acknowledgement: The author wishes her thanks to Honorable Vice-chancellor Dr. C. Swaminathan Avl and Registrar Dr. K. Angamuthu Avl, Periyar University, Salem for their administrative support and excellent infrastructure facilities provided and also thank Dr. V. Raj, Professor and Head, Department of Chemistry, Periyar University, Salem for his help.

REFERENCES

Source of Support: Nil, Conflict of Interest: None.