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ABSTRACT 

Here we have evaluated the Single Nucleotide Polymorphisms (SNPs) that can alter the expression and the function in CHN1 gene 
through computational methods. To explore possible relationships between genetic mutations and phenotypic variation, different 
computational methods like Sorting Intolerant from Tolerant (SIFT, an evolutionary-based approach), Polymorphism Phenotyping 
(PolyPhen, a structure-based approach) and I-Mutant 3.0 (support vector machine based tool) are discussed. There were 7 missense 
mutations; in this we observed 5 variants that were deleterious and damaging respectively. We got 6 non-synonymous SNPs 
(nsSNPs) (85.71%) to be deleterious by SIFT, I- Mutant 3.0 and PolyPhen-2. Then cation-π interactions in protein structures are 
identified and analyzed the roles played by Arg, Lys interactions with π (Phe, Tyr or Trp) residues and their role in the structural 
stability. Then docking analysis between 1MH1 and the native and mutant modeled structures have done. Subsequently, modeling 
of these 5 variants was performed to understand the change in their conformation with respect to the native CHN1 by computing 
their root mean square deviation (RMSD). Those 4 missense mutation were due to loss of stability in their mutant structures of 
CHN1. This was confirmed by computing their total energies using GROMOS 96 force field and these mutations were cross validated 
with computational programs. 

Keywords: Missense mutation, CHN1, RMSD, Total energy, RAC1, π- interactions 

 
INTRODUCTION 

uane’s retraction syndrome (DRS) is a congenital 
eye movement disorder characterized by 
adduction deficiency, abduction limitation, globe 

retraction, and palpebral fissure narrowing on attempted 
adduction1. DRS is the frequent cause of strabismus in 
children and may result in amblyopia-related visual loss. 
Some of the data suggest that DRS may result from 
abnormal development or absence of the abducens nerve 
(cranial nerve VI)2. As the six muscles help in eye 
movement, the improper movement of these eye 
muscles causes Duane syndrome i.e. the sixth cranial 
nerve that controls the lateral rectus muscle (the muscle 
that rotates the eye out towards the ear) does not 
develop properly3. 

The problem occurs not only with the eye muscles, but 
also with nerves, that transmits the electrical impulses to 
the muscle. The eye deviates upward and downward is a 
main symptom of DRS. Sometimes the head position of 
patients often maintain a head posture or head turn to 
keep the eyes straight and in some cases the eye appear 
to be smaller than the other one. Duane retraction 
syndrome-2 (DURS2; 604356) is caused by mutation in 
the CHN1 gene (118423) on chromosome 2q312. CHN1 
(chimerin 1) mutations can hyperactivate α2-chimaerin 
and result in aberrant cranial motor neuron 
development4. CHN1 gene disrupts the normal 
development of these nerves and the extraocular muscles 
needed for side-to-side eye movement. Abnormal 
function of these muscles leads to restricted eye 
movement and related problems with vision1,6,7,8. 

Mutational analysis suggests that CHN1 interacts with 
RAC1. Ras-related C3 botulinum toxin substrate 1 (Rac1) 
is a protein found in human cells which encodes RAC1 
gene. The protein N-chimaerin is responsible for the 
cause of DRS, which activates CHN1 gene. 

Seven mutations in the CHN1 gene have been identified 
in families with isolated Duane retraction syndrome9. In 
this study we are screening these mutations using 
computational tools and the commonly affected 
deleterious mutants are taken. Then we will be finding 
out some of features of a protein, how they interact and 
their structure stability. In addition to that we are finding 
out the cation-π interactions to find out the stability. In 
proteins, C–H….π interactions occur between the C atom 
of main‐ or side‐chain amino acid residue and the 
aromatic side chains of phenylalanine (F), tyrosine (Y), 
tryptophan (W) and histidine (H). Here we are trying to 
focus on protein properties such as secondary structure 
involvement, solvent accessibility, interaction range, 
stabilization centers and conservation score10. The 
substrate, RAC1, was then docked with both the native 
protein and mutants to determine the binding effect and 
the nature of the flexibility in the binding pockets, which 
explained the decreased binding efficiency of these 
missense mutations11. 

MATERIALS AND METHODS 

Datasets 

The SNPs and their related protein structures were 
obtained from the Swissprot and PDB database for our 
computational analysis.12-14 

Computational Identification and Structural Analysis of Deleterious Functional SNPS
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SIFT, Sequence Homology based Method for Functional 
Consequence of nsSNP 

The SIFT predicts whether submitted nsSNP affected the 
protein function based on sequence homology and amino 
acid properties. SIFT is a sequence homology-based tool 
which predicts the variants as neutral or deleterious using 
normalised probability score. The degree of conservation 
of a particular position in a protein was determined 
through this tool. It is a multistep procedure which 
searches for similar sequences, chooses closely related 
sequences that may share similar function, obtains the 
multiple alignment of these chosen sequences, and 
calculates normalized probabilities for all possible 
substitutions at each position from the alignment. 

If the tolerance index score is less than 0.05, then it is 
predicted to be deleterious and which is greater than 0.05 
is considered to be neutral15-16. 

PolyPhen, Structure Homology based Method for 
Functional change in Point Mutant 

PolyPhen 2.0 is a structural homology based tool. It 
calculates position-specific independent counts (PSIC) 
scores for each of the two variants and then computes 
the PSIC scores difference between them. It analyzes the 
damaged point mutations at the structural level is 
considered to be very important to understand the 
functional activity of the concerned protein. 

The higher the PSIC score difference, the higher the 
functional impact a particular amino acid substitution 
would be likely to have17. 

I-Mutant 3.0, Support Vector Machine Tool for Protein 
Stability 

I-Mutant 3.0 is a suite of Support Vector Machine (SVM) 
based predictors incorporated in a unique web server 
which gives the opportunity to predict protein stability 
changes upon single-site mutations based on Gibbs free 
energy. The output files show the predicted free energy 
change value or sign (ΔΔG), which was calculated from 
the unfolding Gibbs free energy value of the mutated 
protein minus the unfolding Gibbs free energy value of 
the native protein (kcal mol-1). 

Positive ΔΔG values meant that the mutated protein has 
higher stability and negative values indicate lower 
stability19-20. 

Modeling Single Amino Acid Polymorphism (SAAP) 
Location on Protein Structure to compute the RMSD 

Structure analysis was performed to evaluate the 
structural deviation between native proteins and mutant 
proteins by means of root mean square deviation 
(RMSD). We used the web resource Protein Data Bank 
and the single amino acid polymorphism database 
(SAAPdb) to identify the 3D structure of CHN1 (PDB ID: 
3CXL)21. We also confirmed the mutation position and the 
mutation residue in PDB ID 3CXL. The mutation was 
performed in silico using the SWISSPDB viewer, and 

NOMAD-Ref server performed the energy minimization 
for 3D structures22. As the server uses Gromacs as the 
default force field for energy minimization, based on the 
methods of steepest descent, conjugate gradient, and 
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS)23-24 methods, we used conjugate gradient method 
to minimize the energy of the 3D structure of CHN1. To 
optimize the 3D structure of CHN1, we used the ifold 
server for simulated annealing which efficiently samples 
the vast conformational space of biomolecules in both 
length and time scales. 

Divergence of the mutant structure from the native 
structure could be caused by substitutions, deletions and 
insertions and the deviation between the two structures 
could alter the functional activity with respect to binding 
efficiency of the inhibitors, which was evaluated by their 
RMSD values25-27. 

Computation of Total Energy and Stabilizing Residues 

Total energy indicates the stability between native and 
mutant modeled structures, and could be computed by 
the GROMOS96 force field that is embedded in the 
SWISSPDB viewer. Molecular mechanics or force field 
methods use classical type models to predict the energy 
of the molecule as a function of its conformation. It 
allows us to predict equilibrium geometries, transition 
states and relative energies between conformers or 
between different molecules. Performing energy 
minimization and simulated annealing removes steric 
clashes and to obtains the best stable conformation. Total 
energy was computed for native and mutants by 
GROMOS force field28-29. To identify the stabilizing 
residues for both the native and mutant structures 
represented a significant parameter for understanding 
their stability. We have used the server SRide to identify 
the stabilizing residues in the native and mutant protein 
models. Stabilizing residues were computed using 
parameters such as surrounding hydrophobicity, long-
range order, stabilization center, and conservation 
score30. 

Computation of Cation–π Interactions Energy 

Cation-π interactions in protein structures are identified 
and evaluated by using an energy-based criterion for 
selecting significant side chain pairs. These cation–π 
interactions are obtained using CaPTURE program. 
Cation-π interactions are found to be common among 
structures in the Protein Data Bank. 

The total Cation–π interaction energy (Ecat–π) has been 
divided into electrostatic (Ees) and van der Waals energy 
(Evw) and was computed using the program CaPTURE, 
which had implemented a subset of OPLS force field21 to 
calculate the energies31-32. 

The Ecat-π is the sum of these two energies, i.e., 
electrostatic and the van der Waals energy. 

Ecat-π = Ees + EvdW 
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Conservation Score Calculation 

The conservation score of residues were calculated using 
Consurf server (http://consurf.tau.ac.il/). Conservation 
score is a useful parameter for the identification of 
conserved residues in a protein sequence35-36. 

Secondary Structure and Solvent Accessibility 

We obtained the information about secondary structures 
and solvent accessibility of the proteins using the 
program DSSP. Solvent accessibility was divided into 
three classes: buried, partially exposed, and exposed 
indicating respectively the least, moderate, and high 
accessibility of the amino acid residues to the solvent. 
The structure and function of proteins is determined by 
two important intermediate factors. They are secondary 
structure preference and solvent accessibility patterns. In 
order to obtain the preference and pattern of each 
cation-π interaction-forming residue in glycoproteins, we 
conducted a systematic and careful analysis based on 
their location in different secondary structures and their 
solvent accessibility37-38. 

Calculating the Total number of Intra Molecular 
Interactions using PIC Server 

To compute the intra-molecular and inter molecular 
interactions for native and mutants structures is done by 
Protein Interactions Calculator. PIC server accepts atomic 
coordinate set of a protein structure in the standard 
Protein Data Bank (PDB) format. Interactions within a 
protein structure and interactions between proteins in an 
assembly are essential considerations in understanding 
molecular basis of stability and functions of proteins and 
their complexes. There are several weak and strong 
interactions that render stability to a protein structure or 
an assembly. It computes various interactions such as 
interaction between a polar residues, disulphide bridges, 
hydrogen bond between main chain atoms, hydrogen 
bond between main chain and side chain atoms, 
hydrogen bond between two side chain atoms, 
interaction between oppositely charged amino acids 
(ionic interactions), aromatic- aromatic interactions, 
aromatic-sulphur interactions and cation-π interactions39. 

Analysing the Binding Affinity between CHN1 and RAC1 

To find the binding affinity between CHN1 and Ras-
related C3 botulinum toxin substrate 1 (Rac1), we used 
the protein-protein docking server, GRAMM-X which is 
based on GRAMM Fast Fourier Transformation 
methodology by employing smoothed potentials, 
refinement stage, and knowledge-based scoring40. Then, 
the docked protein complex is given to the DFIRE server 
as an input for calculating the binding free energy (ΔG) 
score. It used a new reference state called the distance-
scaled, finite ideal-gas reference (DFIRE) state. It is a 
distance-dependent structure-derived potential 
developed so far and all employed a reference state that 
can be characterized as a residue (atom)-averaged state. 
In addition, the DFIRE-based all-atom potential provides 

the most accurate prediction of the stabilities of mutants 
based on knowledge-based all-atom potentials41. 

RESULTS AND DISCUSSION 

Single Amino Acid Polymorphism Dataset from 
Swissprot 

The CHN1 and a total of 7 variants namely L20FI, 126M, 
Y143H, A223V, G228S, P252Q and E313K were retrieved 
from Swissprot database (Table 1). 

Table 1: List of Functionally Significant Mutants predicted 
to be by SIFT, I-Mutant 3.0 and PolyPhen-2 

Variants SIFT PolyPhen I-Mutant 3.0 

L20F 0 0.97 -0.89 

I126M 0.91 0.042 -1.27 

Y143H 0.01 0.998 -1.15 

A223V 0.02 0.999 0 

G228S 0 0.998 -1 

P252Q 0 0.954 -1.18 

E313K 0.01 0.983 -1.29 

Notes: Letters in bold indicate mutants predicted to be less stable, 
deleterious and damaging by I-Mutant 3.0, SIFT and PolyPhen-2 
respectively. 

Deleterious Single Point Mutants identified by the SIFT 
Program 

The protein sequences of the 7 variants were submitted 
to SIFT to determine their tolerance indices. As the 
tolerance level increases, the functional influence of the 
amino acid substitution decreases and vice versa. Here 
the 6 variants were found to be deleterious with 
tolerance index scores of ≤0.05 (Table 1). Among these 6 
variants, 3 variants showed a very high deleterious 
tolerance index score of 0.00. Two variants showed 
tolerance index score of 0.01 and one variant showed 
0.02. Interestingly, all the deleterious variants identified 
by SIFT also were seen to be less stable by the Polyphen 
server. 

Damaging Single Point Mutations identified by the 
PolyPhen Server 

The protein sequence with mutational position and amino 
acid variants associated with the 7 single point mutants 
were submitted to the PolyPhen server. A PSIC score 
difference of 0.5 and above was considered to be 
damaging. Out of 7 variants, 6 were considered to be 
damaging by PolyPhen (Table 1). These variants exhibited 
a PSIC score difference from 0.95 to 0.99. The variants 
were found to be damaging by PolyPhen program were 
also deleterious by SIFT and also by Mutant 3.0 except 
A223V. 

Identification of Functional variants by I-Mutant 3.0 

Of the 7 variants, 6 were found to be less stable using the 
I-Mutant 3.0 server (Table 1). Among these 6 variants, 4 
variant showed a ΔΔG value between <-1 and <-1.29 and 
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one variants showed a ΔΔG value >-0.89 as depicted in 
Table 1. 

Rational Consideration of Detrimental Point Mutations 

We have considered the 5 most potential detrimental 
point mutations (L20FI, Y143H, G228S, P252Q and E313K) 
for further course of investigations because they were 
commonly found to be less stable, deleterious and 
damaging by the I-Mutant3.0, SIFT and Poly Phen-2 
servers respectively19-21. As we consider the statistical 
accuracy of these three programs, I-Mutant improves the 
quality of the prediction of the free energy change caused 
by single point protein mutations by adopting a 
hypothesis of thermodynamic reversibility of the existing 
experimental data. The accuracy of prediction for 
sequence and structure based values were 78% and 84% 
with correlation coefficient of 0.56 and 0.69, 
respectively42. SIFT correctly predicted 69% of the 
substitutions associated with the disease that affect 
protein function. PolyPhen-2 evaluates rare alleles at loci 
potentially involved in complex phenotypes, densely 
mapped regions identified by genome-wide association 
studies, and analyses natural selection from sequence 
data, where even mildly deleterious alleles must be 
treated as damaging. PolyPhen-2 was reported to achieve 
a rate of true positive predictions of 92%42-44. To obtain 
precise and accurate measures of the detrimental effect 
of our variants, comprehensive parameters of all these 
three programs could be more significant than individual 
tool parameters. 

Hence, we further investigated these detrimental 
missense mutations by structural analysis. Figure 1 shows 
the list of functionally significant mutations with the 
commonly affected ones. 

 
Figure 1: List of Functionally Significant Mutations 

Computing the RMSD by Modeling of Mutant Structures 

The available structure of CHN1 is PDB ID 3CXL. The 
mutational position and amino acid variants were 
mapped onto 3CXL native structure. Mutations at a 
specified position were performed in silico by SWISSPDB 
viewer independently to obtain a modeled structure. 
NOMAD-Ref server22 and ifold server25 performed the 
energy minimizations and stimulated annealing 
respectively, for both native structure and the 7 mutants 

modeled structures. To determine the deviation between 
the native structure and the mutants, we superimposed 
the native structures with all 7 mutant modeled 
structures and calculated the RMSD. The higher the 
RMSD value, the more deviation there is between the 
native and mutant structure, which in turn changes the 
binding efficiency with the substrate because of deviation 
in the 3D space of the binding residues of CHN1. 

Table 2 shows the RMSD values for native structure with 
each mutant modeled structure. Table 2 shows that, one 
variant, L20F exhibited a high RMSD >2.00 Å and the 
other four variants exhibited an RMSD >1.00 Å. 

Application of GROMOS 96 and SRIDE for Native 
Structure and Mutant Modeled Structures. 

The total energy was calculated for both native and 
mutant structures. Table 2 shows that total energy of 
native structure was -13542.394 kcal mol-1. Whereas the 
2 mutant structures all had slightly higher total energies 
and 3 have lesser total energies compared with the native 
structure. Note that the higher the total energy, the 
lesser the stability and vice versa. We then used the SRide 
server to identify the stabilizing residues of both the 
native structure and the mutant modeled structures 
(Table 2). The native structure has only one stabilizing 
residue whereas on the other hand, 2 mutant structures 
have one stabilizing residue and the other 3 were 
showing no stabilizing residue was found because of less 
stringent threshold criteria. This indicates that 2 mutants 
L20F and E313K were less stable than the native 
structure. We further evaluated the effect of these 
detrimental missense mutations by performing binding 
analysis between CHN1 and RAC1 using docking studies. 

Computing the Intra-Molecular Interactions in CHN1 

We further validated the stability of protein structure by 
using the PIC server39 to identify the number of intra-
molecular interactions for both native and mutant 
structures (Table 3). Interactions within a protein 
structure and the interactions between proteins in an 
assembly were essential considerations in understanding 
molecular basis of stability and functions of proteins and 
their complexes. There were several weak and strong 
intra-molecular interactions that render stability to a 
protein structure. Therefore these intra-molecular 
interactions were computed by PIC server in order to 
further substantiate the stability of protein structure. 
Based on this analysis, we found that a total number of 
1108 intra-molecular interactions were obtained in the 
native structure of CHN1. On the other hand, 5 mutant 
structures of CHN1 established the intra-molecular 
interactions between the range of 1166 to 1507 as shown 
in Table 3. 

We further evaluated the effect of these 5 detrimental 
missense mutations by performing binding analysis 
between CHN1 and RAC1 through protein-protein 
docking studies in order to understand the functional 
activity of CHN1. 
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Table 2: RMSD, Total Energy and Stabilizing Residues for the Native Protein and Mutants. 

Variants RMSD Total energy 
(Kj/mol) 

No: of SR Stabilizing residues 

Native 
 

-13542.4 1 CYS222 

L20F 2.58Ǻ -24875.2 1 PRO294 

Y143H 0.41Ǻ -12321 - No Stabilizing Residue was found! You may specify less stringent threshold criteria. 

G228S 0.41Ǻ -11222 - No Stabilizing Residue was found! You may specify less stringent threshold criteria. 

P252Q 0.51Ǻ -17909.8 - No Stabilizing Residue was found! You may specify less stringent threshold criteria. 

E313K 0.39Ǻ -9044.07 1 CYS178 

Notes: RMSD- Root Mean Square Deviation; SR- Stabilizing residues; the common stabilizing residues are shown in bold 

Table 3: Number of Intra-Molecular Interactions of the Native Protein and Mutants 

Variants Total HI MM MS SS II AA AS CI 

3CXL 1108 338 489 126 97 28 18 7 5 

L20F 1507 369 574 294 201 35 20 8 6 

Y143H 1166 347 513 136 102 37 17 8 6 

G228S 1169 352 510 135 105 35 18 8 6 

P252Q 1184 353 523 139 102 37 18 6 6 

E313K 1167 351 509 137 104 34 18 8 6 

Notes: Total no of intramolecular interactions. HI- Hydrogen Interactions, MM- Main chain-Main chain interaction, MS- Main chain Side chain 
interaction, SS- Side chain side chain interactions, II- Ionic-Ionic interaction, AA- Aromatic-Aromatic interactions, AS- Aromatic-Sulphur interactions, CI- 
Cation-π interactions 

Table 5: Secondary Structure 

PDB ID Cat-residue 2° str ASA π-residue 2° str ASA Dseq 

Native_3CXL R281 S 18 Y396 H 67 115 

 
K368 H 118 Y443 H 65 75 

 
Figure 2: Superimposed Structure of the Native Protein 
(Green) with Mutant 

 
Figure 3: Docked Complexes of Native and Mutant CHN1 
with RAC1 

(A) Superimposed structure of native CHN1 (green) with 
mutant L20F (blue) structure showing RMSD of 2.58Ǻ (B) 
Superimposed structure of native CHN1 (green) with 
mutant Y143H (red) structure showing RMSD of 0.41Ǻ (C) 
Superimposed structure of native CHN1 (green) with 
mutant G228S (magenta) structure showing RMSD of 0.41Ǻ 
(D) Superimposed structure of native CHN1 (green) with 
mutant P252Q (violet) structure showing RMSD of 0.51Ǻ. 
(E) Superimposed structure of native CHN1 (green) with 
mutant E313K (orange) structure showing RMSD of 0.39Ǻ. 

(A) Docked complex of Native CHN1 (green) and RAC1 
(grey) having the Free energy of -1022.37, (B) Docked 
complex of L20F (blue) and RAC1 (grey) having the Free 
energy of -1053.73, (C) Docked complex of Y143H (red) and 
RAC1 (grey) having the Free energy of -1019.57, (D) Docked 
complex of G228S (yellow) and RAC1 (grey) having the Free 
energy of -1022.65, (E) Docked complex of P252Q 
(magenta) and RAC1 (grey) having the Free energy of -
1022.79, (F) Docked complex of E313K (violet) and RAC1 
(grey) having the Free energy of -1009.37. 

Table 6: Average Cation-π Interaction Energy 

PDB ID R-F (-Kcal/mol) R-Y (-Kcal/mol) R-W (-Kcal/mol) K-F (-Kcal/mol) K-Y (-Kcal/mol) K-W (-Kcal/mol) 

3CXL - R281-Y396(-8.31) - - K368-Y443(-2.76) - 

L20F - R281-Y396 (8.31) - - K368-Y443 (-2.76) - 

Y143H - R281-Y396 (8.31) - - K368-Y443 (-2.76) - 

G228S - R281-Y396 (8.31) - - K368-Y443 (-2.76) - 

P252Q - R281-Y396 (8.31) - - K368-Y443 (-2.76) - 

E313K - R281-Y396 (8.31) - - K368-Y443 (-2.76) - 
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Analyzing the Binding Efficiency for Native and Mutant 

In order to find out the binding efficiency of native and 
mutant RAC1, we implemented molecular dynamics 
approach for rationalizing the functional activity of these 
5 mutants. In this analysis, we performed 5 missense 
mutations (L20FI, Y143H, G228S, P252Q and E313K) in the 
chain A of the PDB IDs 3CXL and 1MH1 by swisspdb 
viewer independently and energy minimization was 
performed for the entire complex (both native and 
mutant complex) by GROMACS (Nomad-ref) followed by 
simulated annealing to get the optimized structures using 
a discrete molecular dynamics approach (ifold). We used 
Grammx to dock CHN1 native and mutant structures with 
RAC1 and furthermore; we used DFire, for finding the 
protein conformation free energy source for the docked 
complex retrieved from Grammx. We used this server for 
the missense mutation analysis with respect to finding 
the free energy source of both native and mutants of 
RAC1. In this analysis, we found that the binding free 
energy for RAC1 with native CHN1 protein was found to 
be -1022.37 kcal/mol, has a higher binding affinity 
compared to the mutants. This analysis portrays that 
native CHN1 exhibited higher binding affinity with RAC1. 
Hence, the lesser binding free energies may probably be 
due to loss of intermolecular non-covalent interactions. 
This analysis clearly portrayed that native complex had 
high intermolecular non covalent interactions than 
mutant complexes. 

Energetically Significant Cation–π Interactions 

Table 4: No of Intramolecular Interactions, Atomic 
Contact Energy and Free Energy for the Native protein 
and Mutants 

Variants 
Total no. of Intramolecular 

Interactions 
Atomic Contact 

Energy (ACE) 
Free Energy 
(Kcal/mol) 

Native 1108 -103.10 -1022.37 

L20F 1507 -470.2 -1053.73 

Y143H 1166 -23.19 -1019.57 

G228S 1169 -91.08 -1022.65 

P252Q 1184 -2.88 -1022.79 

E313K 1167 -175.06 -1009.37 

Notes: R- Arginine, F- Phenylalanine, Y- Tyrosine, W- Tryptophan, K- 
Lysine 

The Cation–π interaction energy of both native and 
mutant prion proteins was analysed. The two pairs of 
cation-π interactions (Arginine- Tryptophan and Arginine-
Tryptophan) in native are -8.31 and -2.76 respectively 
(Table 4). On the other hand mutants show -8.31 and -
2.76, which has almost similar energy which shows 
cation-π interactions. The results are shown in Figure 2. 

Secondary Structure Preferences 

The occurrence of weak interactions has been observed 
at the terminus of the secondary structural units, in 
particular α-helix and β-sheets46,47. These interactions 
play a definitive role in stabilizing the proteins. Here we 

have calculated the occurrence of cation-π forming 
residues in secondary structure. We found that the 
cation-π forms Strands (S) and Turns (T) which is shown in 
Table 5. 

CONCLUSION 

Of the 7 variants that were retrieved from Swissprot, 6 
variants were found less stable by I-Mutant2.0, 6 variants 
were found to be deleterious by SIFT and 6 variants were 
considered damaging by PolyPhen. Five variants were 
selected as potentially detrimental point mutations 
because they were commonly found to be less stable, 
deleterious and damaging by the I-Mutant 3.0, SIFT and 
Poly-Phen-2.0 servers, respectively. 

The structures of these 5 variants were modeled and the 
RMSD between the mutants and native structures ranged 
from 0.39Å to 2.58Å. Docking analysis between 1MH1 
and the native and mutant modeled structures generated 
Free Energy scores between -1009.37 and -1053.73. 
Finally, we concluded that the lower binding affinity of 5 
mutants (L20FI, Y143H, G228S, P252Q and E313K) with 
RAC1 compared with CHN1 in terms of their Free energy 
and RMSD scores identified them as deleterious 
mutations. 

Thus the results indicate that our approach successfully 
allowed us to (1) consider computationally a suitable 
protocol for missense mutation (point mutation/single 
amino acid polymorphism) analysis before wet lab 
experimentation and (2) provided an optimal path for 
further clinical and experimental studies to characterize 
CHN1 mutants in depth. 
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