Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Trimetazidine Hydrochloride and Metoprolol Succinate in Pharmaceutical Dosage Form

Hinge Madhuri A., Mahida Rajvi J., Sojitra Piyush
Rofel Shri G.M. Bilakhia College of Pharmacy, Vapi(West), Gujarat, India.
*Corresponding author’s E-mail: madhuri_shreyal@yahoo.co.in

ABSTRACT
A simple, rapid, precise and accurate spectrophotometric method has been developed for determination of Trimetazidine Hydrochloride and Metoprolol Succinate by absorbance ratio method in combined dosage form. The absorbance ratio method is based on measurement of absorbance at 249.5 nm (isobosptic point) and 274 nm (λ max of Metoprolol Succinate) as two wavelengths selected for quantification of Trimetazidine Hydrochloride and Metoprolol Succinate. Method obeyed Beer’s law in the concentration range of 40-200 µg/ml for Trimetazidine Hydrochloride and 54-270 µg/ml for Metoprolol Succinate. The proposed methods were validated and can be used for analysis of combined dosage tablet formulation containing Trimetazidine Hydrochloride and Metoprolol Succinate.

Keywords: Trimetazidine Hydrochloride, Metoprolol Succinate, Absorbance ratio method, Method development, UV-visible spectrophotometer.

INTRODUCTION
Trimetazidine Hydrochloride, 1-(2,3,4-trimethoxybenzyl)-piperazine hydrochloride, is used in Angina pectoris and is a powerful anti-ischemic agent. The chemical structure of the Trimetazidine Hydrochloride is shown in Fig. 1(a). Trimetazidine hydrochloride usually prescribed as a long-term treatment of angina pectoris. Trimetazidine hydrochloride prevents a decrease in intracellular adenosinetriphosphate levels, thereby ensuring the proper functioning of ionic pumps and transmembranous sodium potassium flow whilst maintaining cellular homeostasis.

Metoprolol Succinate, Bis([2RS]-1-{4-(2-methoxyethyl)phenoxy}-3-{[1-methylethyl] amino} propan-2-ol) butanediol is used in the treatment of Hypertension, angina, Acute myocardial infarction, supraventricular tachycardia, ventricular tachycardia, congestive heart failure and prevention of migraine headaches. The chemical structure of the Metoprolol Succinate is shown in Fig. 1(b). Metoprolol Succinate competes with adrenergic neurotransmitters such as catecholamines for binding at peripheral (especially cardiac) adrenergic neuron sites, leading to decreased cardiac output.

Trimetazidine Hydrochloride is official in IP 2010 and BP 2009 and Potentiometric titration method is describe for estimation of Trimetazidine Hydrochloride in both IP 2010 and BP 2009. Literature survey reveals that several analytical methods like spectrophotometric method, HPLC method, UPLC-MSMS method and RP-HPLC method in human plasma and LC-MS/MS method in rat plasma and spectrophotometric method and HPLC method have been reported for the determination of Trimetazidine Hydrochloride in bulk drug and pharmaceutical formulations.

Metoprolol Succinate is official in BP 2009 and USP 2007.

Not a single UV method is reported so far for the simultaneous analysis of Trimetazidine Hydrochloride and Metoprolol Succinate in their combined dosage form.

So a need was felt to develop new methods to analyze these drugs simultaneously.

A successful attempt has been made to estimate the two drugs simultaneously by UV spectrophotometric analysis.

In this article simple, rapid, accurate, reproducible and economical methods have been described for the simultaneous determination of Trimetazidine Hydrochloride and Metoprolol Succinate in tablet formulations using Absorbance ratio method.

MATERIALS AND METHODS
Instrumentation
Double beam UV-visible spectrophotometer (Simadzu-1800, Software –UV Probe, Version 2.42) having two matched quartz cells with 1 cm light path. Electronic analytical balance (Mettlertoldeo) was used for weighing the materials.
Reagent and Chemicals

Pure samples of Trimetazidine hydrochloride (Gift sample, Triveni Chemical, Vapi) and Metoprolol Succinate (Gift sample, IPCA laboratories) were used in the proposed spectrophotometric analysis.

Combined tablet formulation (Carvidon-MT) was procured from local market.

Methanol AR (Analytical grade) was procured from SD Fine Chemicals, Mumbai.

All the chemicals used were of analytical grade. Distilled water was used as a solvent throughout the study.

Preparation of Stock Solution

Trimetazidine Hydrochloride

Standard stock solution of Trimetazidine was prepared by dissolving 100 mg Trimetazidine in 100 ml of water and sonicated for 20 min and then dilute up to 100 ml to produce a concentration of 1000 µg/ml, which is the standard stock solution.

Metoprolol Succinate

Standard stock solution of Metoprolol Succinate was prepared by dissolving 100 mg of Metoprolol Succinate in 100 ml of water to produce a concentration of 1000 µg/ml, which is the standard stock solution.

Mixture (Marketed tablet)

For analysis of commercial formulation, twenty tablets were weighed, average weight determined and crushed into fine powder.

The tablet powder equivalent to 100 mg of TMZ and 135 mg of METO was transferred to a 100 ml volumetric flask, dissolved and diluted up to mark with water.

The solution was filtered and first few drops of filtrate were discarded.

12 ml of this solution was diluted to 100 ml with water.

Determination of λmax

10 ml of working standard stock solution of TMZ (1000 µg/ml) and 13.5 ml of standard stock solution of METO (1000 µg/ml) were pipette out into two separate 100 ml volumetric flask and volume was adjusted to the mark with water to get 100 µg/ml of TMZ and 135 µg/ml of METO.

Each solution was scanned between 200-400 nm against methanol as a reagent blank.

Wavelengths were selected from the overlay spectra of TMZ and METO.

The optical characteristic and linear regression data is summarized in Table 1 and Fig 2.

Method Development

Absorbance Ratio Method

Two wavelengths selected are 249.5 nm (isobosptive point) and 274 nm (λ max of Metoprolol Succinate) for determination of Trimetazidine Hydrochloride and Metoprolol Succinate respectively. 10 ml of working standard stock solution of TMZ (1000 µg/ml) and 13.5 ml of standard stock solution of METO (1000 µg/ml) were pipette out into two separate 100 ml volumetric flask and volume was adjusted to the mark with water to get 100 µg/ml of TMZ and 135 µg/ml of METO. Each solution was scanned between 200 - 400 nm against methanol as a reagent blank. Wavelengths were selected from the overlay spectra of TMZ and METO.

Concentration of the drug in the samples was obtained using the following equation:

\[C_x = \left(\frac{Q_m - Q_y}{Q_x - Q_y} \right) \times \frac{A_1}{a_{x1}} \]

\[C_y = \left(\frac{Q_m - Q_x}{Q_y - Q_x} \right) \times \frac{A_1}{a_{y1}} \]

Where, \(Q_m \) = Abs of sample at 274nm (A2) / Abs of sample at 249.5nm (A2)

\(Q_x \) = Absorptivity of TMZ at 274nm / Absorptivity of TMZ at 249.5nm

\(Q_y \) = Absorptivity of METO at 274nm / Absorptivity of METO at 249.5nm

\(Q_x \) and \(Q_y \) are value of TMZ and METO respectively, \(a_{x1} \) and \(a_{y1} \) are absorptivity values at isobestic point for TMZ and METO. \(A_1 \) and \(A_2 \) are absorbance of mixture at \(\lambda_1 \) and \(\lambda_2 \) respectively, \(C_x \) and \(C_y \) are the concentrations of TMZ and METO in µg/ml respectively.

Method Validation

Validation is a process of establishing documented evidence, which provides a high degree of assurance that a specific activity will consistently produce a desired result or product meeting its predetermined specifications and quality characteristics.

The method was validated for different parameters like Linearity, Accuracy, Precision, Ruggedness, Limit of Detection (LOD) and Limit of Quantification (LOQ) as per the ICH (International Conference on Harmonization).

Linearity

Various aliquots were prepared form the stock solution (1000µg/ml) ranging from 40- 270 µg/ml. The samples were scanned in UV-VIS Spectrophotometer using Distilled Water as blank. It was found that the selected drug TMZ shows linearity between the 40-200 µg/ml and METO shows between the 54-270 µg/ml. Linear regression data is summarized in Table 1, calibration curve shown in Fig. 3.
Figure 1(a): Chemical Structure of Trimetazidine Hydrochloride

Figure 1(b): Chemical structure of Metoprolol succinate

Figure 2(a): UV spectra of standard Trimetazidine (100ppm)

Figure 2(b): UV spectra of standard Metoprolol Succinate (135ppm)

Figure 3(a): Calibration curve for TMZ at 274 nm in Water

Figure 3(b): Calibration curve for METO at 274 nm in Water

Figure 3(c): Calibration curve for METO at 249.5 nm in Water

Figure 3(d): Calibration curve for METO at 249.5 nm in Water
Table 1: Summary of optical characteristic and method validation result of Trimetazidine Hydrochloride and Metoprolol Succinate

<table>
<thead>
<tr>
<th>Parameters</th>
<th>UV Spectrophotometrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ (nm)</td>
<td>(Isoabsorbive point for TMZ and METO)</td>
</tr>
<tr>
<td></td>
<td>249.5 nm</td>
</tr>
<tr>
<td>TMZ</td>
<td>METO</td>
</tr>
<tr>
<td>Beer’s Law limits (µg/ml)</td>
<td>40-200</td>
</tr>
<tr>
<td>Regression equation (*Y)</td>
<td>0.001x + 0.0048</td>
</tr>
<tr>
<td>Slope (m)</td>
<td>0.0011</td>
</tr>
<tr>
<td>Intercept (c)</td>
<td>0.0048</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.112 ± 0.00753</td>
</tr>
<tr>
<td>Correlation co-efficient (r²)</td>
<td>0.9974</td>
</tr>
<tr>
<td>Accuracy</td>
<td>% recovery of dugs at 249.5 nm</td>
</tr>
<tr>
<td>Level of % recovery</td>
<td>TMZ</td>
</tr>
<tr>
<td>80</td>
<td>99.43</td>
</tr>
<tr>
<td>100</td>
<td>101.62</td>
</tr>
<tr>
<td>120</td>
<td>100.38</td>
</tr>
<tr>
<td>Precision</td>
<td>% RSD for Intraday Precision at 249.5 nm</td>
</tr>
<tr>
<td>LOD (µg/ml)</td>
<td>4.29</td>
</tr>
<tr>
<td>LOQ (µg/ml)</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2: Analysis data of Marketed Formulation

<table>
<thead>
<tr>
<th>Tablet batch No.</th>
<th>Trimeetazidine Hydrochloride</th>
<th>Metoprolol Succinate</th>
<th>Trimeetazidine Hydrochloride</th>
<th>Metoprolol Succinate</th>
<th>Trimeetazidine Hydrochloride</th>
<th>Metoprolol Succinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMY0002</td>
<td>120</td>
<td>162</td>
<td>121.74 ± 0.203</td>
<td>164.27 ± 0.805</td>
<td>101.45</td>
<td>101.45</td>
</tr>
<tr>
<td>CDMY0001</td>
<td>120</td>
<td>162</td>
<td>118.25 ± 0.357</td>
<td>162.6 ± 0.543</td>
<td>98.54</td>
<td>100.37</td>
</tr>
</tbody>
</table>

Precision

Precision of the method was demonstrated by intraday and interday variation studies. In intraday variation study, 9 different solutions of same concentration that is 120 µg/ml for TMZ and 160 µg/ml for METO were prepared and analyzed three times in a day i.e. morning, afternoon and evening and the absorbance were noted.

In the interday variation study, solutions of same concentration 120 µg/ml for TMZ and 160 µg/ml for METO were prepared and analyzed three times for three consecutive days and the absorbances were noted. % RSD is shown in Table 1.

Accuracy

The accuracy of an analytical procedure express the closeness of agreement between the value, which is accepted either as a conventional true value or an accepted reference value and the value found.

The accuracy of the method were determined by preparing solutions of different concentrations that is 80%, 100% and 120% in which the amount of marketed formulation was kept constant i.e. 100% and the amount of pure drug of TMZ and METO was added for 80%, 100% and 120% in marketed formulation respectively.

The solutions were prepared and the accuracy was indicated by % recovery. The recovery values for TMZ and METO ranged from 98% to 102% shown in Table 1.

Limit of Detection (LOD)

The Limit of Detection (LOD) was determined based on standard deviation of response of the calibration curve.

The standard deviation of absorbance of calibration curve and slope of the calibration curves was used. According to following formula was used to calculate the LOD. The result was shown in Table 1.

\[
LOD = 3.3 \times \frac{S.D}{S}
\]

Where; S.D=standard deviation
S=slope of absorbance of calibration curve
Limit of Quantification (LOQ)

The Limit of Quantification (LOQ) was determined based on standard deviation of response of the calibration curve.

The standard deviation of absorbance of calibration curve and slope of the calibration curves was used. According to following formula was used to calculate the LOQ. The result was shown in Table 1.

\[LOQ = 10 \times \frac{S.D}{S} \]

Where; S.D=standard deviation
S=Slope of absorbance of calibration curve

Assay of Marketed Formulation (Tablet)

For analysis of commercial formulation, twenty tablets were weighed, average weight determined and crushed into fine powder. An accurately weighed quantity of powder equivalent to 100 mg and 135 mg of TMZ and METO respectively and transferred into 100 ml volumetric flask. 12 ml of this solution was diluted to 100 ml with water volume was adjusted to mark with same solvent up to 100 ml to produce a concentration 120 µg/ml of TMZ and 162 µg/ml of METO. Calculated amount found (mg/ml) and % of label claim estimated of TMZ and METO in marketed formulation. The result was shown in Table 2.

RESULTS AND DISCUSSION

The proposed method of analysis for TMZ and METO in combination were validated as per the recommendations of ICH guidelines for parameter like accuracy, precision, linearity, and range, limit of detection and limit of quantification. The drugs obeys Beer’s law in concentration range of 40-200 µg/ml for TMZ and 54-270 µg/ml for METO µg/ml with correlation coefficient of 0.999.

Precision of both the methods were calculated by intraday and inter day variation study and %RSD of observation were found to be less than 2, shown in Table 1. Results of recovery studies were within 98-102%, shown in Table 1.

CONCLUSION

A simple, accurate, precise, robust and rapid UV visible spectrophotometric method has been developed for simultaneous estimation of TMZ and METO in pharmaceutical dosage form. The method has been validated for TMZ and METO in pharmaceutical dosage form. The method developed for quantitative determination of TMZ and METO is rapid, precise, accurate and selective. The results of validation tests were found to be satisfactory and therefore, these methods can be applied successfully for routine quality control analysis of TMZ and METO in bulk and pharmaceutical formulation. The developed method can be conveniently used for the assay determination of bulk TMZ and METO drugs and pharmaceutical dosage form.

REFERENCES

15. Vora BN, Parmar RR, Shah DA and Nayak V, Absorption Correction Method for Simultaneous Estimation of...

Source of Support: Nil, Conflict of Interest: None.