Synthesis of New Potential Chemotherapeutic Agents Incorporating Naproxen Sub-Structure.

Shaaban K. Mohameda,b,c, Mustafa R Albayatid, Omyna A. Abd Allahande, Ahmed M. M. El-Saghiere

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England.
bChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt.
cDepartment of Chemistry, College of Science, Kirkuk University, Kirkuk, Iraq.
dChemistry Department, Faculty of Science, Sohag University, Sohag, Egypt.

*Corresponding author’s E-mail: shaabankamel@yahoo.com

ABSTRACT

A series of potential biologically active compounds have been synthesized through the derivatization of carboxyl group in Naproxen core structure involving the conversion the Naproxen to its methyl ester then to the acid hydrazide. The acid hydrazide of Naproxen was incorporated with hydrazones, diamide linkage, oxadizole, pyrazolone, triazole, quinazoline and indole containing motifs. The targeted compounds have been achieved in a very good yield under conventional heat and irradiation conditions. All compounds have been characterized by IR, 1H-NMR, 13C-NMR and Mass spectra.

Keywords: Naproxen; anti-inflammatory; NSAID’s.

INTRODUCTION

Naproxen, (S)-(+)6-methoxy-a-methyl-2-naphthaleneacetic acid, is a non-steroidal anti-inflammatory drug used in painful inflammatory rheumatic and certain non-rheumatic conditions. Anti-inflammatory effects of naproxen are generally thought to be related to its inhibition of cyclooxygenase and consequent decrease in prostaglandin concentrations in various fluids and tissues. Naproxen possesses the anti-inflammatory, anticonvulsant and reduced ulcerogenic activity. However, Naproxen, as other common anti-inflammatory drugs (NSAIDs) which are widely employed in the treatment of pain and inflammation, has been reported to be associated with a number of undesirable effects, which in particular include gastrointestinal (GI) toxicity. The reported literatures confirm that gastrointestinal side effects of Naproxen and other aroylpropanoic acids are due to the presence of free carboxylic group in the parent drug. Therefore, the temporarly mask or manipulation of the acidic group in NSAID’s are promising means to reduce or to abolish the GI toxicity due to the local action mechanism. So, the glycolamide ester prodrugs were synthesized to reduce the gastrointestinal toxicity. It has been found that series of phenolic ester and amide derivatives of the NSAID naproxen had both anti-oxidative and anti-proliferative activity. Furthermore, aliphatic and aromatic esters and amides, along with amide derivatives with covalently linked anti-oxidant moieties were prepared as potential prodrugs.

Hydrazone is a versatile moiety that exhibits a wide variety of biological activities. A number of hydrazidehydrazones have been demonstrated to possess interesting anti-depressant, antibacterial, antifungal, anticonvulsant, anti-inflammatory, antimarial and anti-tuberculosis activities. Organic compounds incorporating heterocyclic ring systems continue to attract considerable interest due to their wide range of biological activities. A great number of established drugs bear heterocyclic system with certain substitutions and functionalization. The oxadizole drugs were the first effective chemotherapeutic agents to be employed systematically for the prevention and cure of bacterial infection in human beings. Several pyrazoline substitution products are used in medicine as anti-inflammatory, analgesic, antioxidant, antipyretic, diuretic, antimicrobial and antidepressant.

In recent years, indole and Isatin derivatives have acquired conspicuous significance due to their wide spectrum of biological activities. On the light of these observations, and as a continuation of our works on functionalization and incorporation of NSAID’s core structures, we have synthesized series of new potential chemotherapeutic agents based Naproxen core structure and incorporated amide linkage, hydrazide-hydrazones and heterocyclic nucleus such as oxadizole, pyrazole, indole, triazole, thiophene and furan rings.

MATERIALS AND METHODS

General

Melting points were uncorrected and measured using open capillary method using Gallen Kamp melting point apparatus. The IR spectra were recorded by Perkin-Elmer FT-IR instrument using potassium bromide pellets. 1H-NMR, 13C-NMR spectra were recorded in deuterated chloroform (CDCl3), acetone CD3COCD3 or dimethylsulphoxide (DMSO-d6) with TMS as an internal standard on a JOEL 400 MHz instrument. Chemical shifts are expressed as [ppm], s for singlet, d for doublet, t for triplet, q for quartet, m for multiplet, and b for broad. X-
ray has been measured at National Crystallography Services (NCS), Southampton, United Kingdom.

Materials

Naproxen has been purchased from Aldrich. Compounds such as methyl 2-(6-methoxynaphthalen-2-yl)propanoate \(2^{25}\), 2-(6-methoxynaphthalen-2-yl)propanoyl chloride \(4^{27}\) and 3-amino-2-phenylquinazolin-4(3H)-one \(II^{38}\) were synthesized according to the cited literatures.

The physical properties of the synthesized compounds are tabulated in Table 1.

Table 1: Physical properties of Synthesized Compounds

<table>
<thead>
<tr>
<th>No.</th>
<th>M.F</th>
<th>M. wt</th>
<th>Solvent</th>
<th>Yield%</th>
<th>M.P or B.P.(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C({12})H({15})N({3})O({2})</td>
<td>244.28574</td>
<td>Ethanol</td>
<td>82%</td>
<td>89-91</td>
</tr>
<tr>
<td>3</td>
<td>C({12})H({16})N({2})O({2})</td>
<td>244.29</td>
<td>Ethanol</td>
<td>85%</td>
<td>138-139</td>
</tr>
<tr>
<td>4</td>
<td>C({12})H({15})ClO(_{2})</td>
<td>248.06</td>
<td>Ethanol</td>
<td>79%</td>
<td>93-94</td>
</tr>
<tr>
<td>5</td>
<td>C({12})H({16})N({4})O({2})</td>
<td>364.14</td>
<td>Ethanol</td>
<td>82%</td>
<td>209-211</td>
</tr>
<tr>
<td>6</td>
<td>C({12})H({16})N({3})O({3})</td>
<td>432.24</td>
<td>Ethanol</td>
<td>85%</td>
<td>200-202</td>
</tr>
<tr>
<td>7</td>
<td>C({12})H({16})N({2})O({3})</td>
<td>349.14</td>
<td>Dioxan</td>
<td>71%</td>
<td>251-253</td>
</tr>
<tr>
<td>8</td>
<td>C({12})H({17})N({3})O({4})</td>
<td>456.20</td>
<td>Dioxan</td>
<td>68%</td>
<td>237-239</td>
</tr>
<tr>
<td>9</td>
<td>C({12})H({16})N(_{4})</td>
<td>618.25</td>
<td>Dioxan</td>
<td>70%</td>
<td>229-232</td>
</tr>
<tr>
<td>10</td>
<td>C({12})H({17})N(_{4})</td>
<td>582.23</td>
<td>Ethanol</td>
<td>76%</td>
<td>109-112</td>
</tr>
<tr>
<td>11</td>
<td>C({12})H({17})N({3})O({5})</td>
<td>888.35</td>
<td>Ethanol/DMF</td>
<td>65%</td>
<td>291-294</td>
</tr>
<tr>
<td>12</td>
<td>C({12})H({17})N({3})O({6})</td>
<td>449.17</td>
<td>Ethanol</td>
<td>87%</td>
<td>143-145</td>
</tr>
<tr>
<td>13</td>
<td>C({12})H({17})N({3})O({7})</td>
<td>286.08</td>
<td>Ethanol</td>
<td>89%</td>
<td>189-191</td>
</tr>
<tr>
<td>14</td>
<td>C({12})H({17})N({3})O({8})</td>
<td>300.10</td>
<td>Ethanol</td>
<td>91%</td>
<td>152-153</td>
</tr>
<tr>
<td>15a</td>
<td>C({12})H({17})N({3})O({9})</td>
<td>332.15</td>
<td>Ethanol</td>
<td>92%</td>
<td>180-181</td>
</tr>
<tr>
<td>15b</td>
<td>C({12})H({17})N({3})O({10})</td>
<td>348.15</td>
<td>Ethanol</td>
<td>90%</td>
<td>169-171</td>
</tr>
<tr>
<td>15c</td>
<td>C({12})H({17})N({3})O({11})</td>
<td>375.46</td>
<td>Ethanol</td>
<td>92%</td>
<td>185-187</td>
</tr>
<tr>
<td>15d</td>
<td>C({12})H({17})N({3})O({12})</td>
<td>358.43</td>
<td>Ethanol</td>
<td>88%</td>
<td>173-176</td>
</tr>
<tr>
<td>15e</td>
<td>C({12})H({17})N({3})O({13})</td>
<td>362.42</td>
<td>Ethanol</td>
<td>89%</td>
<td>161-164</td>
</tr>
<tr>
<td>16a</td>
<td>C({12})H({17})N({3})O({14})</td>
<td>322.36</td>
<td>Ethanol</td>
<td>85%</td>
<td>165-166</td>
</tr>
<tr>
<td>16b</td>
<td>C({12})H({17})N({3})O({15})</td>
<td>338.42</td>
<td>Ethanol</td>
<td>93%</td>
<td>186-188</td>
</tr>
<tr>
<td>17</td>
<td>C({12})H({17})N({3})O({16})</td>
<td>373.14</td>
<td>Ethanol</td>
<td>89%</td>
<td>194-196</td>
</tr>
<tr>
<td>18</td>
<td>C({12})H({17})N({3})O({17})</td>
<td>437.17</td>
<td>Ethanol</td>
<td>77%</td>
<td>205-208</td>
</tr>
<tr>
<td>19</td>
<td>C({12})H({17})N({3})O({18})</td>
<td>586.26</td>
<td>DMF</td>
<td>88%</td>
<td>293-295</td>
</tr>
<tr>
<td>20</td>
<td>C({12})H({17})N({3})O({19})</td>
<td>311.13</td>
<td>Ethanol</td>
<td>87%</td>
<td>183-185</td>
</tr>
<tr>
<td>21</td>
<td>C({15})H({15})N({3})O({2})</td>
<td>269.12</td>
<td>Ethanol/Dioxan</td>
<td>84%</td>
<td>220-222</td>
</tr>
</tbody>
</table>

The key compounds 3 and 4 have been employed as main precursors to produce multi-variety of naproxen containing compounds as shown in Schemes 1 and 2.
General Procedure

Synthesis of 2-hydroxy-N'-[2-[(6-methoxynaphthalen-2-yl)propanoyl]benzohydrazide 5

A mixture of equimolar quantities of 4 (0.01mol) and salicylic acid hydrazide (0.01mol) was refluxed for two hours in 50 ml dry THF. The mixture was cooled and poured onto crushed ice. The obtained precipitate was collected and recrystallized from ethanol to give 5 as brown crystals. IR(KBr cm⁻¹): (C=O amide 1637, 1696), (NH, 3133), (C-H, Ar 3052), (C-H aliphatic 2934). ¹HNMR: (DMSO-d6) δ at 1.6(d, CH₃), 3.8(q, CH₃ aliphatic), 3.8(s, CH₃-O), 7.3-7.0(s, Ar in naphthalene nuclei), 7.15,7.4(d, Ar in naphthalene nuclei), 7.1, 7.6(d, Ar in naphthalene ring), 7.8(d, Ar, 2H), 8.9(d, Ar, 2H), 6.9(s,2H,NH), ¹³C-NMR: 165, 172(C=O amide), 21(CH₃), 42(C-H aliphatic), 59(CH₃-O), 151(2C, Ar in pyridine nuclei), 121(2C, Ar in pyridine nuclei), 116, 126, 153, 103, 130, 126, 124, 132, 125, 122(10C, Ar in naphthalene).

Synthesis of 2-(6-Methoxy-naphthalen-2-yl)-propionic acid N'-[2-[(6-methoxynaphthalen-2-yl)propanoyl]hydrazide 8

A mixture of equimolar quantities of 4 (0.01mol) and ibuprofen acid hydrazide (0.01mol) was refluxed for two hours in 50 ml dry THF. The mixture was cooled and poured onto crushed ice. The obtained precipitate was collected and recrystallized from ethanol to give 8 as a white powder. IR(KBr cm⁻¹): (C=O amide, 1645), (NH, 3190), (C-H aliphatic 2838-2936), (C-H, Ar 2974). ¹HNMR: (DMSO-d6) δ at 1.4(d, 6H, 2CH₃), 3.3(s, 6H, 2OCH₃), 3.7(q, j=6.8, 2CH₃ aliphatic), 7.0(s, 2H, Ar in 2naphthalene nuclei), 7.3(s, 2H, Ar in two naphthalene nuclei), 7.01, 7.6(d, 4H, Ar in two naphthalene nuclei), 7.25, 7.6(d, 4H, Ar in 2 naphthalene nuclei). ¹³C-NMR: 172(C=O amide), 55(2C, OCH₃), 43(2C,CH aliphatic), 18(2C, CH₃), 157, 137, 133, 129, 128, 127, 125, 119, 106(20C, Ar, in 2naphthalene nuclei). MS (EI, 70 eV), m/z (Irel, %): a molecular ion peak (M+) at m/z=456,7.5, base peak at m/z=185, 100%.

Synthesis of N'-(2-[(6-methoxynaphthalen-2-yl)propanoyl]hydrazinecarbonyl) benzene 9

A mixture of equimolar quantities of 4 (0.02mol) from 3 and (0.01mol) of benzene-1,3-dicarbonyl dichloride was refluxed for two hours in 50 ml dry THF. The mixture was cooled and poured onto crushed ice. The obtained precipitate was collected and recrystallized from Dioxan to give 9 as a brown powder. IR (KBr cm⁻¹): (C=O amide, 1640, 1651), (NH, 3200), (C-H aliphatic 2843-2935), (C-H, Ar 2978-3010). ¹HNMR: (DMSO-d6) δ at 1.4(d, 6H, 2CH₃), 3.6(s, 6H, OCH₃), 3.9(q, j=6.8, 2CH aliphatic), 8.0(dd, 2H, Ar in benzene ring), 8.0(dd, 2H, Ar in benzene ring), 10.2(s,2H,NH), 10.4(2s, 2H, NH), 12H, Ar in two naphthalene nuclei were appeared in the range of 6.8-7.5. ¹³C-NMR: 173, 165(C=O amide), 19(2C, CH₃), 43(2C,CH aliphatic), 55(2C, OCH₃), 131(2C, Ar in benzene ring), 134(2C, Ar in benzene ring), 129, 127(2C, Ar in benzene ring), 106, 119, 125, 127, 74, 128, 129.6, 133.7, 137, 157(20C, Ar in two naphthalene nucleus, each two carbons have one signal).
Synthesis of 1,3-bis[2-[1-(6-methoxynaphthalen-2-yl)ethyl]-1,3,4-oxadiazole]benzene 10

A mixture of 0.001mole of compound 9 and 5ml of POCl₃ was refluxed for four hours. The mixture was cooled and poured onto crushed ice then neutralized with NaHCO₃ solution 20%.

The obtained precipitate was collected and recrystallized from ethanol to give 10 as brown powder. IR(KBr cm⁻¹): (C=O amide, 1665,1679), (NH, 3191), C-H aliphatic, 2868-2935), (C-H, Ar, 2973-3040). ¹H-NMR: (DMSO-d₆) δ at 1.8(d, 6H, 2CH₃), 3.5(s, 6H, 2-OCH₃), 3.8(q, 2H, C-H aliphatic), 7.8(s, 1H in benzene ring), 8.1(dd, j=2.7, 2H in benzene ring), 7.7(t, 1H, in benzene ring), 12H, Ar in two naphthalene nucleus were appeared in the range of 7.0-7.7. ¹³C-NMR: 161(2C, in oxadiazole ring), 160(2C, in oxadiazole ring), 19(2C, 2CH₃), 37(2C, C-H aliphatic), 55(2C, 2-OCH₃), 127(2C, Ar in benzene ring), 135(2C, Ar in benzene ring), 130,127(2C, Ar in benzene ring), 105, 119, 124, 125, 127, 129, 130, 134, 158(20C, Ar in two naphthalene nucleus, each two carbons have one signal). MS (EI, 70 eV), m/z (rel, %): a molecular ion peak (M+) at m/z=583,63%, base peak at m/z=140, 100%.

A mixture of (0.03mole) of 3 and (0.01mole) of benzene-1,3,5-tricarbonyl trichloride was refluxed for 3hr in 25ml of dry THF.

The mixture was cooled and poured onto crushed ice. The precipitate that formed was collected and recrystallized from ethanol/DMF to give 11 as a white powder. IR(KBr cm⁻¹): (C=O amide, 1665,1679), (NH, 3191), C-H aliphatic, 2868-2935), (C-H, Ar, 2973-3040). ¹H-NMR: (DMSO-d₆) δ at 1.4(d, 9H, 3CH₃), 3.8(s, 9H, 3OCH₃), 8.4(s, 3H in benzene ring), 10.3(s, 3H, 3NH), 10.6(s, 3H, 3NH), 18H, Ar in three naphthalene nucleus were appeared in the range of 7.1-7.8. ¹³C-NMR: 171, 176(2(C=O amide), 20(3C, 3CH₃), 43(3C, 3C=H aliphatic), 58(3C, 3-OCH₃), 130(3C, 3C=H, Ar in Benzene ring), 135(3C, Ar, in benzene ring), 105, 118, 125, 125.5, 127, 128, 129, 133, 134, 158(30C, Ar in three naphthalene nucleus, each three carbons have one signal.

Synthesis of 2-(6-Methoxy-naphthalen-2-yl)-N-(4-oxo-2-phenyl-4H-quinazolin-3-yl)-propionamide 12

Compound 12 has been synthesized in two different ways.

Method 1

An equimolar ratio of 3 and the appropriate substituted-4H-3,1-benzoxazin-4-one was dissolved and refluxed in 30ml pyridine for 8hours. The reaction mixture was poured on cold water to afford a solid product. The crude product was filtered off, washed diluted hydrochloric acid followed by cold ethanol then recrystallized from ethanol to furnish a fine brownish powder of 12.

Method 2

A mixture of equimolar quantities of 4 (0.01mol) and 3-amino-2-phenylquinazolin-4(3H)-one II [38] (0.01mol) was refluxed for 10hrs in 50 ml of freshly distilled dry pyridine. The mixture was cooled and poured onto crushed ice and acidified with conc. HCl. The precipitate that formed was collected and washed twice with water then recrystallized from ethanol to give 12 as a brown powder. IR (KBr cm⁻¹): (C=O amide, 1632), (C=O cyclic amide, 1685), (-NH, 3258), (C-H aliphatic 2867-2935), (C-H, Ar 3021-3058). ¹H-NMR: (DMSO-d₆) δ at 1.6(d, 3H, CH₃), 4.0(q,1H, C-H aliphatic), 3.8(s, 3H, -OCH₂), 8.9(s, 1H, -NH), 7.8(d, 1H, Ar in quinazoline nuclei), 7.5(d, 1H, Ar in quinazoline nuclei), 7.6(t, 1H, Ar in quinazoline nuclei), 7.7(t, 1H, Ar in quinazoline nuclei), 5H, Ar in benzene ring attached to quinazoline nuclei were appeared in the range of 7.1-7.7, 6H, Ar in naphthalene nuclei were appeared in the range of 6.8-7.6. ¹³C-NMR: 169,172(C=O amide and cyclic amide), 19(1C, CH₃), 43(C=H aliphatic, 57(1C, -OCH₂), 126, 127, 127.5, 135, 123, 166 (7C, Ar in quinazoline nuclei), 134, 126.5, 129, 131(signals for 6C, Ar in benzene ring attached to quinazoline nuclei), 134.3, 128.7, 126.9, 126.1, 133.9, 129.9, 107, 157, 119, 129.6(10 signals for 10C in naphthalene nuclei).

5-[1-(6-methoxynaphthalen-2-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione 13

A mixture of 0.005mol from 3, 0.01mol of KOH in 100ml ethanol and 0.2mol of CS₂ was refluxed for 23hr (the reaction time was monitored by the evolution of H₂S). The mixture was cooled and poured onto crushed ice then acidified with HCl. The precipitate was collected, washed with water twice then recrystallized from ethanol to give 13 as a pure yellow powder. IR (KBr cm⁻¹): (C=S thione 1161), (C=S, in oxadiazole ring 1607), (-NH, 3235), (2935, C-H aliphatic), (2975, C-H, Ar). ¹H-NMR: (DMSO-d₆) δ at 1.4(d, 3H, CH₃), 3.9(q, 1H, C-H aliphatic), 3.6(s, 3H, -OCH₂), 5.9(s, 1H, -NH), 7.0(s, 1H, Ar), 7.3(s, 1H, Ar), 7.6(d, 1H, Ar), 7.2(d, 1H, Ar), 6.9(d, 1H, Ar), 7.4(d, 1H, Ar), 13C-NMR: 14(1C, CH₃), 40(1C, C-H aliphatic), 57(1C, -OCH₂), 152(1C, -C=S in oxadiazole ring), 165(1C, C=S), 157, 117, 127, 128, 133, 107, 125, 132, 127.5, 125.4(10C, Ar in naphthalene nuclei).

Synthesis of 4-amino-5-[1-(6-methoxynaphthalen-2-yl)ethyl]-2,4-dihydro-3H-1,2,4-triazole-3-thione 14

A mixture of 0.001mol of 13 and 0.06mol of hydrazine hydrate 80% in 50ml of ethanol was refluxed for 5hr. The mixture was cooled, and poured onto crushed ice, the solid that formed was collected and recrystallized from ethanol to give 14 as a pink powder. IR(KBr cm⁻¹): (C=S thione, 1164), (C=N 1605 in triazole ring), (NH, 3316), (C-H aliphatic 2868-2935), (C-H, Ar 2981-3092). ¹H-NMR: (DMSO-d₆) δ at 1.4(d, 3H, CH₃), 3.2(q, 1H, C-H aliphatic), 3.8(s, 3H, -OCH₂), 3.4(s, 2H, -NH₂), 5.9(s, 1H, -NH), 6H, Ar in naphthalene nuclei were appeared in the rage of 6.8-7.7. ¹³C-NMR: 179(C=S in oxadiazole ring), 151(C=N in oxadiazole ring), 15(1C, CH₃), 41(C-H aliphatic), 58(1C, -
OCH₃), (10C, Ar in naphthalene nuclei were appeared in the range of 106-158).

General synthesis of 2-(6-methoxy naphthalen-2-yl)-N’-[(E)-aryl methylidene]propane hydrazide 15a-d, 15e and 16a,b

Microwave Irradiation Method

A mixture of an equimolar ratio of appropriate aromatic aldehydes (0.0.1mol) and naproxen hydrazide 3 (0.01mol) along with few drops of catalytic glacial acetic acid was transferred to a conical flask and subjected to microwave irradiation for 2 minutes. The solid mass that obtained was collected and recrystallized from ethanol.

Conventional Method

An equimolar ratio of the appropriate aldehydes (0.01mmol) and naproxen acid hydrazide 3 (0.01mol) with few drops of glacial acetic acid as a catalyst was refluxed in 20ml of absolute ethanol for 4-5hr. The mixture was cooled and concentrated to half volume and the precipitate that formed was collected and recrystallized from ethanol to give the corresponding aryl methylidene propanehydrazides 15a-d, 15e and 16a,b.

This product was obtained as yellow crystal. IR(KBr cm⁻¹): (C=O amide, 1664), (C=N, 1605), (-NH, 3238), (C-H aliphatic, 2896-2968), (C-H, Ar, 3058). ¹H-NMR: (DMSO-d₆) δ at 1.5(d, 3H, CH₃), 3.8(s, 3H, -OCH₃), 4.7(q, 1H, C-H aliphatic), 8.2(s, 1H, -CH=N-), 11.3(s, 1H, -NH), 11H, Ar in naphthalene nuclei and benzene ring were appeared in the rage of 7.2-7.9. ¹³C-NMR:175(C=O, amide), 160(1C, C=N), 18(1C, CH₃), 44(1C, C-H aliphatic), 55(1C, -OCH₃), 126.9(2C, Ar, in Benzene ring), 126.7(2C, Ar, in Benzene ring), 128.7(1C, Ar in Benzene ring), 128.8(1C, Ar in benzene ring), (10C, Ar in naphthalene nuclei were appeared in the range of 105-157). The x-ray crystal structure of 15a (Fig. 3) showed the naphthalene ring system (C2-C11) is essentially planar with an r.m.s. deviation of 0.003 A and makes a dihedral angle of 77.57° with the terminal phenyl ring (C16-C21). In the crystal structure, the molecules exist in the “extended” form. The packing consists of ribbons of molecules extending parallel to c (Fig. 4) and associated via N—H ⋯ O and weak C—H ⋯ O hydrogen bonds (Fig. 5). In addition, C—H ⋯ π interactions are observed.

Figure 1: The molecular structure of 5, showing the labeling of the non-H atoms and displacement ellipsoids drawn at the 50 probability level

Figure 2: View of the packing and hydrogen bonding (dashed lines) of 5 down the a axis, in the unit-cell. H atoms not involved in hydrogen bonds have been omitted for clarity

Figure 3: Perspective view of the 15a with 50% probability displacement ellipsoids

Figure 4: The hydrogen bonding (dotted lines) viewed along the a axis of 15a
This product was obtained as yellow powder. IR(KBr cm\(^{-1}\)): (C=O amide, 1658), (C=N, 1609), (C-H aliphatic, 2925-2945), (C-H, Ar, 3047). \(^1\)H-NMR: (DMso-d\(_6\)) δ at 1.5(d, 3H, CH\(_3\)), 3.8(s, 3H, -OCH\(_3\)), 4.0(q, 1H, C-H aliphatic), 2.7(s, 6H,2CH\(_3\)), 7.3(d, 2H, Ar in benzene ring), 6.5(d, 2H, Ar in benzene ring), 8.2(s, 1H, -CH=N-H), 9.1s, 1H, -NH), (6H, Ar in naphthalene nuclei were appeared in the range of 6.9-7.6). \(^13\)C-NMR: 174(C=O, amide), 159(1C, C=N), 18(1C, CH\(_3\)), 43(1C, C-H aliphatic), 54(1C, -OCH\(_3\)), 129(2C, Ar in benzene ring), 115(2C, Ar in benzene ring), 145(1C, Ar in benzene ring), 121(1C, Ar in benzene ring), (10C, Ar in naphthalene nuclei were appeared in the range of 105-155).

This product was obtained as a white powder. IR(KBr cm\(^{-1}\)): (C=O amide, 1667), (C=N, 1601), (C-H aliphatic, 2966-2949), (C-H, Ar, 3061). \(^1\)H-NMR: (DMso-d\(_6\)) δ at 1.56(d, 3H, CH\(_3\)), 3.8(s, 3H, -OCH\(_3\)), 4.0(q, 1H, C-H aliphatic), 2.7(s, 6H,2CH\(_3\)), 7.3(d, 2H, Ar in benzene ring), 6.5(d, 2H, Ar in benzene ring), 8.2(s, 1H, -CH=N-H), 9.1s, 1H, -NH), (6H, Ar in naphthalene nuclei were appeared in the range of 6.9-7.6). \(^13\)C-NMR: 175(C=O, amide), 158(1C, C=N), 17(1C, CH\(_3\)), 43(1C, C-H aliphatic), 55, 57(2C, -OCH\(_3\)), 116(2C, Ar in benzene ring), 132(2C, Ar in benzene ring), 161(1C, Ar, -C-O in benzene ring), 121(1C, Ar in benzene ring), (10C, Ar in naphthalene nuclei were appeared in the range of 107-155).
114(1C, Ar, -C=O in thiophene ring), (10C, Ar in naphthalene nuclei were appeared in the range of 106-156).

Synthesis of 2-(6-methoxynaphthalen-2-yl)-N'-[3(2-oxo-1,2-di-hydro-3H-indol-3-ylidene)propanehydrazone]

A mixture of an equimolar ratio of isatin (0.01mol) and naproxen hydrazide 3 (0.001mol) along with few drops of catalytic glacial acetic acid was transferred to a conical flask and subjected to microwave irradiation for 2 minutes. The solid mass that obtained was collected and recrystallized from ethanol to give 17 as a yellow powder. IR(KBr cm⁻¹): (C=O amide, 1699), (C=O cyclic amide, 1718), (C=N, 1620), (-NH, 3234), (C-H aliphatic, 2867-2950), (C-H, Ar, 3024-3048). ¹H-NMR: (DMSO-d6) δ at 1.6(d, 3H, CH₃), 4.0(q, 1H, C-H aliphatic), 3.6(s, 3H, -OCH₃), 8.1(s, 1H, -NH in indol ring), 8.6(s, 1H, -NH), 7.8(d, 1H, Ar in indole nuclei), 7.4(t, 1H, Ar in indole nuclei), 7.1(t, 1H, Ar in indole ring), 7.6(d, 1H, Ar in indole nuclei), 7.53(s, 1H, Ar), 7.2(d, 1H, Ar), 7.59(d, 1H, Ar), 6.8(s, 1H, Ar), 7.1(d, 1H, Ar), 7.65(s, 1H, Ar). ¹³C-NMR: 172, 162(C=O, amide), 157(1C, C=N), 16(1C, CH₃), 44(1C, C-H aliphatic), 57(1C, -OCH₃), 10C, Ar in naphthalene nuclei were appeared in the range of 109-158). (6C, Ar in indole nuclei were appeared in the range of 119-139).

Synthesis of 1,4-bis [2-(6-methoxynaphthalen-2-yl)-N'-[(E)-methylene]propanehydrazone]benzene 18

A mixture of 0.001mol of benzene-1,4-dicarbaldehyde and 0.002mol of naproxen hydrazide 3 in 50 ml of absolute ethanol with few drops of glacial acetic acid was refluxed for 4h. The mixture was concentrated to half and the precipitate that formed was collected and recrystallized from DMF to afford 18 as a yellow powder. IR (KBr cm⁻¹): (C=O amide, 1662), (C=N, 1605), (-NH, 3268), (C-H aliphatic, 2864-2955), (C-H, Ar, 3070). ¹H-NMR: (DMSO-d6) δ at 1.7(d, 6H, 2CH₃), 4.0(q, 2H, 2H-C-H aliphatic), 3.8(s, 6H, 2OCH₃), 8.0(s, 2H, -CH=NH), 8.4(s, 2H, -NH), 7.8(dd, 4H, Ar in benzene ring), 8.1(s, 2H, -CH=NH), 7.0(s, 2H, Ar), 7.05(d, 2H, Ar), 7.6(d, 2H, Ar), 7.48(s, 2H, Ar), 7.2(d, 2H, Ar), 7.58(d, 2H, Ar). ¹³C-NMR: 175(2C, C=O, amide), 153(2C, -C=NH), 19(2C, 2CH₃), 42(2C, 2H-C-H aliphatic), 58(2C, 2OCH₃), 128(4C, -CH=NH, Ar in benzene ring), 135(2C, Ar in benzene ring), (20C, Ar in naphthalene nuclei were appeared in the range of 107-156).

Synthesis of 3-[3-Amino-5-imino-1-[2-(6-methoxynaphthalen-2-yl)propionyl]-1,5-di-hydro-pyrazol-4-ylidene]-1,3-di-hydro-indol-2-one 19

A mixture of an equimolar ratio of naproxen hydrazide 3 and (2-oxo-1,2-di-hydro-3H-indol-3-ylidene)propanedinitrile in 25ml of ethanol and few drops of TEA was refluxed for 10h. The mixture was cooled and poured onto crushed ice then neutralized with sodium bicarbonate. The precipitate that formed was washed with water then collected and recrystallized from ethanol/Dioxan to furnish 19 as pinky crystals. IR(KBr cm⁻¹): (C=N of oxadiazole ring 1613), (-NH, 3115, 3290), (C-H aliphatic 2863-2930), (C-H, Ar, 3035). ¹H-NMR: (DMSO-d6) δ at 1.6(d, 3H, CH₃), 4.3(q, 1H, C-H aliphatic), 3.3(s, 3H, -OCH₃), 3.9(s, 2H, -NH₂), (6H, Ar in naphthalene nuclei were appeared in the range of 6.9-7.8). ¹³C-NMR: 19(1C, CH₃), 38(1C, C=H aliphatic), 55(1C, -OCH₃), 161, 163(2C, 2C=N in oxadiazole ring), 157(1C, Ar, -C-O-in naphthalene nuclei).
RESULTS AND DISCUSSION

Compound 5 was confirmed by X-ray which confirmed the crystal structure of its mono crystal as shown in Fig(1). In addition, this compound was proofed by IR, \(^1^H\)-NMR, \(^1^3^C\)-NMR. Compound 6 was proofed by IR which showed two vC=O at 1640, 1651 and vNH at 3204. \(^1^H\)-NMR of 6 showed a significant signal at 7.0 (dd, \(j=8.1\)) belongs to aromatic protons of ibuprofen. Also, six aromatic protons of naphthalene nuclei were appeared in the range of 6.9-7.5. The two proton of NH-NH were appeared at 6.8 as a singlet signal. \(^1^3^C\)-NMR of 6 showed two signals at 171, 172ppm belong to two C=O amide and these two signals disappeared in DEPT confirming the structure. Also, the aliphatic carbon atoms showed 8 signals in the range of 18-55, the signal at 44ppm appeared in DEPT down ward confirming that this signal belongs to –CH\(_3\) in the structure. Compound 7 was proofed by IR which showed two vC=O at 1637, 1696, vNH at 3133 and vC=H aromatic at 3052. \(^1^H\)-NMR of 7 showed 3 signals for 7 aliphatic protons in the Naproxen moiety as s, d, q. The most significant signals were at (d, 7.8, 2H, Ar) and at (8.9, 9, 2H, Ar) which belong to the aliphatic protons in pyridine. The –NNHNH\(_2\) two protons were appeared at (s, 6.9ppm). \(^1^3^C\)-NMR of 7 showed two signals at 165, 172 belong to the C=O and these two signals were disappeared in DEPT confirming the structure. Also, there are 13signals in the range of 103-153 belong to the aromatic carbon atoms in the structure, five of these 13 signals were disappeared in DEPT confirming that these carbon were not attached to hydrogen atoms. Compound 8 was proofed by mass spectrum which showed the molecular ion peak at (M\(^+\)) at m/z= 456, 7.5% and the base peak at 185, 100%. \(^1^H\)-NMR of 8 showed the total number of the structure which is 28proton. Significant signal was appeared at (10.1, s, 2H) which belongs to –NNH\(_2\), this shifting towards the downfield could be justified to the probability of the tautomerism between NH and the oxygen atom of the amide group. \(^1^3^C\)-NMR of 8 showed a significant signal at 172 belongs to two C=O amide, because the structure is identical, the two C=O gave one signal and this signal was disappeared in DEPT. Compound 9 was proofed by IR which showed two vC=O bands at 1640, 1651 and vNH band at 3200, vC=H aliphatic at 2843-2935 and vC=H aromatic in the range of 2978-3010. \(^1^H\)-NMR of 9 showed a significant signal at (t, 7.5) belongs to 1H in benzene ring and another characteristic signal at (dd, 8.0, j=1.37) belongs to identical 2H in Benzene ring. \(^1^3^C\)-NMR of 9 showed two signal at 173,165 belong to C=O amide in the structure and these two signals were disappeared in DEPT. Compound 10 was proved by mass spectrum which showed the molecular ion peak at (M\(^+\)) at m/z= 583, 6.3% and the base peak at 140, 100%. IR spectrum of 10 showed the disappearance of the amide bands at 1640, 1651 which were in 9 and the appearance of new band at 1606 which belongs to vC=N band in oxadiazole ring. IR also showed the disappearance of vNH band at 3200 confirming the formation of the Oxadiazole ring. \(^1^H\)-NMR of 10 was very similar to \(^1^H-NMR\) of 9 except that the signal of –NNHNH\(_2\) in 9 was disappeared in 10 confirming the formation of the five membered ring. \(^1^3^C\)-NMR of 10 also was very similar to \(^1^3^C\)-NMR of 9 except that the signals of two C=O amide group at 173, 165 in 9 were disappeared and instead of them the signals of two C=N at 161,160 were appeared. On comparison with DEPT these two signals at 161, 160 were disappeared in DEPT. Compound 11 was proofed by IR which showed two vC=O amide bands at 1665, 1679 and vNH at 3191. \(^1^H\)-NMR of 11 showed a very significant signal at (s, 8.4, 3H) belongs to three protons in benzene ring. The protons of three _NNHNH\(_2\)_ groups were appeared at 10.3, 10.6 as singlet signal, again, this shifting towards the downfield could be justified to the probability of the tautomerism between NH and the oxygen atom of the amide group. \(^1^3^C\)-NMR of 11 showed two signals at 171,176 belong to six C=O amide group and these two signals were disappeared in DEPT. The aliphatic carbon atoms which were 9 carbon atoms gave three signals in the range of 18-55ppm (each three identical carbon gave one signal). Compound 12 was proofed by IR which showed two vC=O bands at 1632 amide and at 1685 cyclic amide. Another characteristic band was at 3258 which belongs to vNH. \(^1^H\)-NMR of 12 showed the protons attached to the aliphatic carbons in naproxen at (1.6, d, 3H), (4.0, q, 1H), (3.8, s, 3H) and the aromatic protons of the quinozoline nuclei at (7.8, d, 1H), (7.5, d, 1H), 7.6, t, 1H), (7.7, t, 1H) confirming that the naproxen have incorporated with quinozoline nuclei. \(^1^3^C\)-NMR of 12 showed two signals at 169, 172 belong to C=O amide and C=O cyclic amide and these two signals were disappeared in DEPT. Compound 13 was proofed by IR which showed a band at 1161 belongs to vC=5 (thione). Another bands at 1607, 3235 belong to vC=N in Oxadiazole ring and vNH- respectively. \(^1^H\)-NMR of 13 showed the characteristic band at (5.9, s, 1H) belongs to –NH. The signal of the protons attached to the aliphatic carbon atoms were appeared at (1.4, d, CH\(_3\)), (3.9, q, 1H), (3.6, s, 3H). In addition, six aromatic protons were appeared in the range of 6.9-7.6. \(^1^3^C\)-NMR of 13 showed a signal at 165 belongs to C=5, and at 152 belongs to –O=C=N in oxadiazole ring. These two signals were disappeared in DEPT. Compound 14 was proofed by IR which showed vC=5 (thione) band at 1164, vNH- at 3316 and vC=N band at 1605 in triazole ring. \(^1^H\)-NMR of 14 showed two significant signals, the first one at (3.4, s, 2H, -NH2) and the second one at (5.9, s, 1H, -NH). The rest of the spectrum is approximately similar to other compounds. \(^1^3^C\)-NMR of 14 exhibited two significant signal at 173 belongs to C=5 and at151 belongs to –O=C=N in oxadiazole ring. The aromatic carbons gave 10 signal in the range of 106-158, while the aliphatic carbons gave three signals at 15, 41, 58. Compounds 15a-e, 16a-b were proofed by IR which showed the band of vC=O in seven compounds in the range of 1651-1667, vC=N in seven compounds in the range of 1600-1615 and vNH in seven compounds in the range of 3190-3238. \(^1^H\)-NMR of 15a-e
showed the significant signal which belongs to –CH=N as a singlet signal in the range of 8.0-8.2 ppm for 15a-e. Another significant signal which belongs to –NH was appeared as a singlet in the range of 9.1-11.3 for 15a-e. Compound 15b showed a signal at (10.2, s, 1H) belongs to phenolic OH. Compound 15c showed a significant signal at (2.7, s, 6H) belongs to –N(CH₃)₂ group. Compound 15d exhibited two characteristic signals the first one at (6.5, d, 1H) belongs to –CH= in alkene and the second one at (5.7, d, 1H) belongs to –CH= in the conjugated system of cinnamaldehyde. Compound 15e showed a significant signal at (3.8, s, 3H) belongs to methoxy group in anesaldehyde. The rest of protons in 15a-e were appeared in the same manner and same locations approximately as that with previous compounds. ¹H-NMR of 16a-b showed the aromatic protons of furan and thiophene in the range of 6.2-7.1 ppm. ¹³C-NMR of compounds 15a-e, 16a-b showed the significant signals which belongs to C=O amide in the range of 170-176 for 15a-e and 16a-b. The signal of C=N was appeared in the range of 155-161 in the seven compounds. The signals of C=O and C=N were disappeared in DEPT. The signals of aromatic carbons in furan ring was appeared at 126, 148, 146. The signals of aromatic carbons in thiophene ring were appeared at 113, 129, 152 ppm confirming the incorporation of these two rings with naproxen moiety.

Compound 17 was proved by IR which showed vC=O amide band at 1699 and vC=O cyclic amide at 1718, vNH at 3234 and the vC=N band was appeared at 1620. ¹H-NMR of 17 showed two characteristic signals the first one at (8.1, s, 1H) belongs to –NH in indole nuclei and the second one at (8.6, s, 1H) belongs to NH proton in Naproxen moiety. Four protons in indole nuclei were appeared in the range of 7.1-7.8 as a d, t, t, d signals respectively. In addition, the signals of naproxen moiety were appeared in the range of 6.8-7.6. ¹³C-NMR of 17 showed the two C=O amide signal at 172, 162 and the signal of C=N at 157ppm. On comparison with DEPT, these three signals were disappeared confirming the existence of them and the structure of the compound. Compound 18 was proved by IR which showed the vC=O amide band at 1662, vC=N band at 1605 and vNH at 3268. In addition, ¹H-NMR showed the significant signal at (8.0, s, 2H) which belongs to two –CH=N in the structure. The signal of two identical –NH group’s was appeared at (8.4, s, 2H) confirming the structure. The most characteristic signal was at (7.8, dd, 4H) which belongs to four protons in benzene ring. The total number of aliphatic and aromatic protons in naproxen nuclei was multiplied confirming that the structure contains two naproxen moieties. ¹³C-NMR of 18 showed one significant signal for two identical C=O amide group at 175 which on DEPT was disappeared. The other characteristic signal was at 153ppm for two –CH=N- group confirming the incorporation of two naproxen nuclei through two imine linkages. Compound 19 was proved by mass spectrum which showed the molecular ion peak at (M’) at m/z= 439, 41.7% and the base peak at 80, 100%. IR spectrum of 19 showed two C=O bands. The first one at 1689 for vC=O amide and the second one for vC=O cyclic amide at 1707. vNH band appeared at 3183 and vC=N band at 1618. The most significant signals in ¹H-NMR of 19 was at (5.9, s, 2H) belongs to –NH₂, at (6.1, s, 1H) belongs to C=NH and at (8.3, s, 1H) belongs to –NH in indole nuclei. The total number of aromatic protons was 10 in the range of 6.8-7.6 ppm confirming the incorporation of naproxen moiety with indole nuclei. ¹³C-NMR of 19 showed two significant signal at 174, 164 belongs to two C=O amide in the structure. Another two significant signals were at 163 belongs to –C=NH and at 154 belongs to –N=C=NH₂ in pyrazoline ring.

On comparison with DEPT these four signals were disappeared confirming its existence. Compound 20 was proved by mass spectrum which showed the molecular ion peak at (M’) at m/z= 311.1, 6.2% and the base peak at 185, 100%. IR spectrum for 20 showed the two v C=O amide bands at 1660, 1674. Also, the band of vNH was appeared at 3232. ¹H-NMR of 20 showed the two characteristic signals of –NH at (8.9, s, 1H) and of –NH₂ at (4.8, s2H). Another significant signal appeared at (2.8, s, 1H) belongs to –C=H proton in pyrazolone ring. The usual signals of Naproxen protons attached to aliphatic and aromatic carbons were appeared in the same locations as with previous compounds. ¹³C-NMR of 20 showed two C=O amide group at 175 for cyclic amide and at 174 for amide group and these two signals were disappeared in DEPT. Also, there is another important signal at 168 belongs to =C=NH₂ which also disappeared in DEPT.

Compound 21 was proved by IR which showed vC=N band of oxadiazole ring at 1613, vNH₂ band at 3115, 3290. ¹H-NMR of 21 showed the characteristic signal at (3.9, s, 2H) which belongs to –NH₂. ¹³C-NMR of 21 showed two characteristic signals at 161, 163 which belong to two C=N group in Oxadiazole ring which on comparison with DEPT were disappeared confirming the formation of this ring.

CONCLUSION

We herein report the synthesis of various scaffold naproxen structure compounds in different ways of functionality such as amides, imines, heterocyclic motifs and merging other NSAIDs through hydrazide-hydrazone linkage for the purpose of masking the carboxylic group in the parent drug. This will give a potential safe therapeutic applications and a wide range of biological potency for all the newly synthesized compounds incorporated naproxen core structure.

Acknowledgement: Manchester Metropolitan University, Kirkuk University and Sohag University are gratefully acknowledged for supporting this study. The authors would like to extend their sincere appreciation to the Deanship of Scientific at King Saud University for its funding of this research through the Research Group Project no RGP-VPP-222.
REFERENCES

Source of Support: Nil, Conflict of Interest: None.

Corresponding Author’s Biography: Dr. Shaaban K. Mohamed

Dr. Shaaban K. Mohamed, after he completed his PhD degree in Organic Synthesis under a combined scholarship between Minia University and Duisburg University in Germany, has been appointed as lecturer at Minia University on 1994. He has been appointed since 1999 as a visiting scientist in different universities in United Kingdom in UMIST and Manchester University till 2008 and gained a vast experience in synthesis of bio-active compounds as well as drug design. On 2002 he has been promoted to assistant professor. On 2008 till now, he has been appointed as a visiting professor at Manchester Metropolitan University (MMU). He managed to establish different essential research projects across the School of Science and Engineering at MMU and mutual academic collaborations with various of international universities across the world. On 2013 he has awarded Knowledge Exchange award for 2013 from MMU. He has published numerous ideas represented in over than 122 of distinguished articles and contributed in several international conferences.