Research Article

ISSN 0976 - 044X

Evaluation of the Surface Water Quality of Lepenc Pond, with Analytical Methods, ASV and ICP-MS

Avni Malsiu*1, Ilir Shehu*2, Skender Demaku3, Naser Troni4, Arton Ramadani5, Liridon Selmani6

¹University of Pristina "HasanPrishtina", Faculty of Natural Sciences and Mathematics, Dept of Chemistry, str. "NënaTereze" Pristina - Kosovo. ²University of Pristina "HasanPrishtina", Faculty of Natural Sciences and Mathematics, Dept of Chemistry, str. "NënaTereze" Pristina - Kosovo. ³University of Pristina "HasanPrishtina", Faculty of Natural Sciences and Mathematics, Dept of Chemistry, str. "NënaTereze" Pristina - Kosovo. ⁴University of Pristina "HasanPrishtina", Faculty of Natural Sciences and Mathematics, Dept of Chemistry, str. "NënaTereze" Pristina - Kosovo. ⁴University of Pristina "HasanPrishtina", Faculty of Natural Sciences and Mathematics, Dept of Chemistry, str. "NënaTereze". Pristina - Kosovo. ⁵Ministry of environment and spatial planning, Department of waters.

⁶Processing facades factory X-FORT, Doganaj, Kaçanik.

*Corresponding author's E-mail: avnimalsiu@hotmail.com, ilirishehu10@hotmail.com

Accepted on: 14-11-2015; Finalized on: 31-12-2015.

ABSTRACT

In this work, we determinated physical, chemical parameters and concentration of heavy metals such as; Fe, Co, Ni, Cu, Zn, Cd, Mn, As, Pb and Cr in Lepenc river. During our fieldwork, we took samples in five sampling points that are presented with symbols L₁, L₂, L₃, L₄ and L₅. Measurement of heavy metal is made by two analytical methods AS-Voltametry and ICP-MS, and then we draw the average of the two methods. Regarding the values of physical and chemical parameters, starting from samples taken in the L₁ to L₅, we expected a gradual increase. Values of Fe have had a slight increase had it noticed a significant increase from samples taken in L₄; 460 ppm in L₅; 730 ppm, exceeding the values according to all international standards. Based on the obtained values seen in L₃ and L₄ sampling points that have values for Pb; 3.74 ppm and 3.87 ppm, values that are disturbing, if water is used for watering. During this scientific work we have followed the change of physical and chemical parameters, particularly the impact of wastewater discharged from the municipality of Sterpce, the factory "Silkapor" and factory "Sharrcem" change the value heavy metal. As expected, the minimum values are L₁-source, religion, <10 ppm, C₀; 0.006 ppm Ni; <0.3 ppm, Cu; 0.4 ppm, Zn; 0.6 ppm Cd; <0:01 ppm, Mn; 0.5 ppm, As; 0.7 ppm Pb; 0:05 ppm and Cr; <0.5 ppm.

Keywords: River Lepenc, heavy metals, water, Kaçanik.

INTRODUCTION

Response of the source to the locality Brezovica formed ravine. It is one of the most attractive residential areas. From the mouth of Brod enters Sopotnic Basin, which stretches from the village to the Kaçanik, Doganaj.

The most important is the branch Nerodime. Lepenci in the territory of Kosovo is over 53 km, the basin area of 607 square kilometers, while the annual average flow rate 7.9 m^3 per second¹.

The primary importance of this study is related to the calculation of the mass concentration of heavy metals in trace: Fe (II), Co (II), Ni (II), Cu (II), Zn (II), Cd (II), Mn (II), As (II), Pb (II) and Cr (II) and other metals, so that together with other factors may have a negative impact on crop grown efficiency along the river Lepenc.

Also, our main focus has been to analyze and assess the level of pollution of the river Lepenc with heavy metals, and the impact of this pollution in flora and fauna.

So knowing the content of heavy metals in water, it is very useful to know the quality of river water used by residents along its flow respectively from the municipality Sterpce, Kaçanik and Elez Han.

MATERIALS AND METHODS

Starting from the principle that the qualitative and quantitative composition of matter varies from place to place, determining the position of sampling in chemical terms is important. Sampling points that are selected, given the characteristic countries in which we expected pollution from anthropogenic activities. The number of site-sampling in our work is 5 and all sampling points that are sampled for determination of chemical-physical parameters. Extraction of champions and elaboration of samples were done according to standards methods for surface water^{6,7}. The study area with sampling locations is shown in figure 1 and the details about all sampling sites are presented in table 1 and 2. Water from Lepenc River, marked by figures such as L₁-Oshllak, L₂-Sllatin, L₃-Nika, L₄-Kaçanik and L₅-Elez Han¹. During the fieldwork the following parameters were: water temperature, air temperature, electrical conductivity, pH and turbidity. We have done the analysis and evaluation of water samples, the concentration of heavy metals in this environment. Samples were taken during March 2012. All required chemicals for determining the physical and chemical parameters, micro and macro pollutants analyzed, chemical purity were "pro analysis" (the highest rate of high purity). The method used for the determination of heavy metals has been methods: Anodic Stripping Voltammetry (ASV) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)^{8,9}. Samples are taken in

International Journal of Pharmaceutical Sciences Review and Research Available online at www.globalresearchonline.net

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

polyethylene bottles at sampling points that outlined high and at different depths, depending on the extent of the river, usually 25 cm below the water surface, given that flow the river at the time of sampling has been calm and normal. Water samples for analysis are taken at five sampling points (L₁, L₂, L₃, L₄ and L₅)^{1 3}. The first point of sampling has been; L1 areas-Oshllak, source river Lepenc, the type of relief rocky-mountainous, potential pollutants, natural pollution, erosion; L₂ areas - Sllatin. The type of relief are mountain, potential pollutants, waste disposal; L_3 zone -Nika, the type of flat relief, potential pollutants, the factory "Silkapor" sewage; area L₄–Kaçanik, type of relief flush pollutants potential, preparations agriculture, wastewater and areas L₅ -Elez Han, the type of relief lowlands combined polluters possible, road traffic, sewage, factory "Sharrcem" etc.

Figure 1: Sampling points marked with red dots in a

square shape along the Lepenci River flow⁵.

The samples are taken with special bottle of 1 dm³. From these bottles, are divided into four cups of 100 cm³ water samples, which are we added nitric acid HNO₃ 0.1mol/dm³ to remove anions in the form of non-metal oxides as HCl, SO₃ etc. Dry remain is dissolved again until in 100cm³. Following further treatment with H₂O₂ samples that are evaporated in electric heater sand until complete evaporation will remove organic pollutants. Dry residue is treated with nitric acid, left for 24 hours staying (to stabilize) and then the sample is divided into four equal parts in order to determine the heavy metals. Then continually we did determination of heavy metals with anodic stripping voltammetry using internal standard techniques (VA STAND 746 Trance Analyzer, Metrohm), with three electronically system [working electrode (Hand mercury drop electrode); Referent electrode (Ag/AgCl); Auxiliary electrode (Pt) in acid nitric HNO₃ (s.p) as basic electrolyte³. Analytical methods to determine the elements require that samples must be in the form of aqueous solution. During digestion of the samples have been carefully digested samples guickly and completely, not for the loss of the sample by evaporation or adsorption on the walls of the container but also the elimination of sample contamination from the reagents used in the process of digestion³.

RESULTS AND DISCUSSION

Our results are presented in table and graphical. In five different points of sampling, we determined the concentration of heavy metals (Fe, Co, Ni, Cu, Zn, Cd, Mn, As, Pb and Cr) in water.

Sample places	Water Temperature [®] C	Air Temperature° C	Electrical Conductivity µs cm ⁻¹	рН	Turbidity NTU
L1	3.2	4.1	263	7.65	15.1
L ₂	4.4	4.8	275	7.73	16.6
L ₃	5.7	5.1	286	7.79	34.2
L4	5.6	10.5	298	7.84	37.1
L ₅	5.9	11.1	391	7.92	41.5

Table 1: Water temperature, air temperature, electrical conductivity, pH and turbidity.

Table 2: Presentation values of concentration of heavy metals in water $\mu g/dm^3$.

Element µg/dm ³	L1	L ₂	L ₃	L4	L ₅
Fe	<10	240	280	460	730
Со	0.006	0.417	0.654	0.903	1.96
Ni	<0.3	2.9	4.5	4.7	9.7
Cu	0.4	2.1	4.3	2.6	5.5
Zn	0.6	4.4	6.9	6.1	18.8
Cd	<0.01	0.02	0.03	0.03	0.09
Mn	0.5	34.7	51.1	96.9	119
As	0.7	0.6	0.94	1.03	1.12
Pb	0.05	0.88	3.74	1.67	3.87
Cr	<0.5	1.1	2	1.6	3.2

International Journal of Pharmaceutical Sciences Review and Research

Available online at www.globalresearchonline.net

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

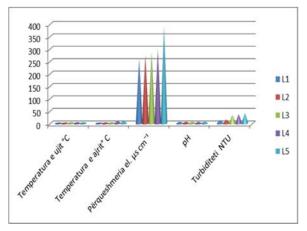


Figure 2: Graphical presentation of the results.

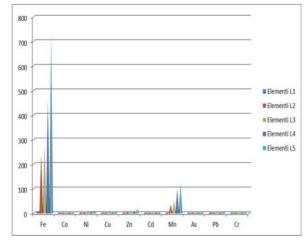


Figure 3: Graphical presentation of the results of heavy metals

From the results obtained it is noticed that the water temperature is different in intervals from 3.2 to 5.9. where in this sampling points there is a change $\Delta T = T_{max}$ - T_{min} = 5.9 °C - 3.2 °C = 2.7 °C. Electrical conductivity is increasing depending on the degree of pollution, the lowest value L₁ is sampling; 263 µS/cm⁻¹ while undergoing a considerable growth in the next sampling points that reaches the maximum value and the L_5 ; 391 μ S/cm⁻¹, this increase comes as a result of discharges of sewage and other polluting factors of the river. pH ranging in the range of 7.65 to 7.92 between weak mainly basic value that does not represent any danger to use this water. Turbidity also had an increase which is the minimum value L₁ samples taken; NTU while the maximum at 15.1 L_5 ; 41.5 NTU. After evaporation residue sampling L_1 is 19.8 mg/dm³ and at L₅; 202.7 mg/dm³, which indicates that in this sampling points that have a negative impact of the cement plant. Based on the analysis of some heavy metals with AS-Voltammetry technique and ICP-Mass Spectrometry we notice that: In sampling L₁, minimum value of Zn is 0.6 µg/dm³ have a continuous rise to sampling L₃; 6.9 μ g/dm³ then landing L₄; 6.1 μ g/dm³ and maximum increase in L₅; 18.8 μ g/dm³, L₅. In sampling L₅, Cd maximum value 0.0032 µg/dm³, while the minimum sampling L₁; 0.0015 μ g/dm³. In sampling L₅, Pb has a maximum value of 11.66 μ g/dm³, while the minimum is in

source L_1 ; 0.005 µg/dm³. In sampling L_5 , Cu has a maximum value of 11.75 μ g/dm³, while the minimum is in L_1 sampling; 3.78 μ g/dm³. The minimum value is the point L_{1} ; <0.1 µg/dm³, while the maximum at the point L_{5} ; 730 µg/dm³, which means that exceeds Croatian and Slovenian standards those of which we did the comparison. Values of Ni; results are within the normal range between the minimum that $<0.3 \mu g/dm^3$ in source L_1 , and it reaches a maximum of source L_5 ; 9.73 µg/dm³. Mn values and Al are beyond the normal in the sampling L_5 , where they brought Mn; 0.5-119 μ g/dm³ and Al; 2-842 μ g/dm³, that these two elements of the standards exceed Croatian and Slovenian standards. As values go from the minimal of 0.7 μ g/dm³ in point L₁ and L₅ and the maximal in the point L_5 ; 1.12 µg/dm³, not exceeding even the EU directives EEC², or the WHO.

CONCLUSION

In general, based on our study regarding impact of heavy metals in the river water Lepenc, we may come to conclusions, as follows:

- From the River Lepenc, according to the results of the analysis shows that the water has soft, hardness that ranges from 2.6 to 4.4 dH from samples taken in the L_1 to L_5 , which flows because of calcareous composition of soil. Alkalinity, total hardness, electrical conductivity and turbidity are higher in the sampling points L₅, this high increase comes as a result of the discharge of wastewater from the use of agricultural land and the emissions from the cement plant "Sharrcem". Also residue after evaporation is higher in the sampling points L₄ and L₅, because the sampling L₄, join two rivers "Nerodime" and "Lepenc" increases the amount of water and discharges of wastewater from the town of Kacanik, and in the same time sampling points L_1 , L_2 has had snow, less at the L₃ and L₄ and not at all at L₅.
- 2. Based on the analysis of heavy metals where are done with ICP-MS and AS-Voltammetry methods note that: Iron (Fe) from samples taken L4 has a significant increase in sampling L_5 , 300 μ g/dm³ to 730 µg/dm³, this happened because at this time "Sharrcem" has been working and "Silkapor" and lime factory "Lepenc" were not in production. We can conclude that contamination above the allowed values of Fe, Cu, Zn, Pb and Cr, all these metals show an increase in the concentration of samples taken in L₁ to sampling L₃ but in sampling L₄ has a lowering of their values, and then an increase in sampling L_5 . The values have a decrease in sampling L2 and then a continual increase until sampling L₅. All heavy metal values have a light increase, but we have a significant increase from sampling L₄ to L₅.

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

REFERENCES

- 1. https://kk.rks-gov.net/kacanik/, Kaçanik, Profile of the Municipality, 2010, 27-68
- 2. Council Directive of 3 Nov on the quality of water intended for human consumption Drinking Water Directive 98/83/EC, 1998.
- 3. Statham P.J, Burton J.D, In: Heavy Metals in the Marine Environment: Furness, R. W., Rainbow. PS.(Eds) Boca Raton, FL: CRC Press; 1990, 5-25.
- 4. Anonym, Methods Standard ISO 9001: Hydrometeorology, Institute Of Kosovo, (2011) Pristina, ElmazSh, Chemical Technology and Environment, Tirana. 2009, 156-169.

- http://www.ammkrks.net/repository/docs/Veprimtaria_Hidrologjike.pdf,Hydr ometeorology, Institute of Kosovo, Pristina, 2011, 56-90.
- 6. APHA, AWWA, WEF Standard methods water examination and waste water (20th ED.). Washington DC. 1998.
- 7. Dalmacija B, Water Quality Control in Towards of Quality Management, text book. 2nd, 2000.
- 8. A. Adrian Ammann. J. Mass Spectrom. 42, 2007, 419–427.
- 9. R. Thomas, Practical Guide to ICP-MS, MarcelDekker Inc., 2004, 379-398.

Source of Support: Nil, Conflict of Interest: None.

