Surveillance of Antibiotic Sensitivity and Resistance Pattern of Bacteria Isolated from Orthopaedic Wound Discharge

Aniruddh Das1*, Kundan Sahu2, Jitendra Narayan Senapati3, Nagen Kumar Debata1, Jagannath Sahoo1, Binod Chandra Raoul1, Prasanta Kumar Brahma1, Mahesh Chandra Sahu1
1Dept of Orthopedics, IMS and SUM Hospital, Siska O Anusandhan University, K 8, Kalinga Nagar, Odisha, Bhubaneswar, India.
2Dept of Microbiology, IMS and SUM Hospital, Siska O Anusandhan University, K 8, Kalinga Nagar, Odisha, Bhubaneswar, India.
3Dept of Surgery, IMS and SUM Hospital, Siska O Anusandhan University, K 8, Kalinga Nagar, Odisha, Bhubaneswar, India.
4Dept of Community Medicine, IMS and SUM Hospital, Siska O Anusandhan University, K 8, Kalinga Nagar, Odisha, Bhubaneswar, India.
5Central Research Laboratory, IMS and SUM Hospital, Siska O Anusandhan University, K 8, Kalinga Nagar, Odisha, Bhubaneswar, India.

Accepted on: 04-12-2015; Finalized on: 31-12-2015.

ABSTRACT
Infections are inevitable in different orthopaedic procedures. In spite of all aseptic precautions, significant postoperative morbidity, mortality, prolonged hospital stay and increased hospital costs are observed. These infections are usually caused by the exogenous or endogenous microorganisms that enter the wound site. Here, we found out the common organisms in orthopaedic wound infections and also performed the antibiotic sensitivity study. This was a prospective study carried out on 2510 patients who were admitted to the orthopedics wards during the last 4 years. The wound swab and pus discharge from orthopaedic patients were sent to Microbiology department and with standard procedure the organisms were identified. Then the antibiotic sensitivity patterns were carried out and basing upon the sensitivity pattern, antibiotics were prescribed. Staphylococcus aureus (675) was the most commonly isolated organism in this study. Apart from this, Pseudomonas aeruginosa (285), Klebsiella Sp. (270), Acinetobacter Sp. (220), Citrobacter (125), Proteus Sp. (85), E. coli (45) and budding yeast cells (35) were isolated. In antibiotic sensitivity pattern, it was found that S. aureus is more sensitive to Tigecycline. Antibiotics should be properly selected and its timing of administration is also crucial. So keeping in mind all these parameters, possible chances of development of surgical site infections and subsequent antibiotic resistance can be reduced to great extent, if not completely eliminated.

Keywords: Infection, orthopaedic surgery, surgical site infection.

INTRODUCTION
Surgical site infections (SSI) are one of the most disastrous and commonest complications of surgery and causes significant postoperative morbidity, mortality, prolongs hospital stay, and increase hospital costs also. These infections concern 2 million cases annually worldwide.1 WHO described Hospital acquired infections as one of the major infectious diseases having huge economic impact.2 Nosocomial infections are significant problem throughout the world and range from 1% in Europe and America to more than 40% in parts of Asia, Latin America and sub Saharan Africa.2

A wide variety of aerobic and anaerobic species of bacteria may be present, either singly or in combination. The lowest infection rate (less than 2%) followed clean operations, such as elective orthopedic procedures, in which the possible sources of contamination were solely airborne or exogenous.

The scenario of SSI is different in orthopaedic surgeries as compared to other surgeries in terms of use of implants, duration of surgery etc. which are important risk factors that accounts to higher infection rate in these surgeries.

This study was undertaken to estimate the common microorganisms found in orthopaedic wards and sensitivity pattern of those organisms.

The microbiology of wound infections in all surgical services has changed very little over the years.4-13 Staphylococcus aureus is the single most commonly encountered organism. Others include aerobic gram negative organisms such as Escherichia Coli, Pseudomonas species, Proteus species and Enterococcus. The relative rates of each vary from one hospital study to another.4-7,9,14,15

In Nigeria, Mbamali observed that 60% of his patients who had implant infection were infected by Staphylococcus aureus. Other organisms in that study were Pseudomonas pyocyanea and Klebsiella species. Onche4 in Lagos cultured Staphylococcus aureus in 72% of cases of wound infections in implants while Escherichia coli and Klebsiella species accounted for 14% each. In Jos, North Central Nigeria, the picture was slightly different where Oguachuba16 found that in 41.9% of his wounds, Proteus species were cultured while Staphylococcus aureus was 25.6%. Coliforms (13.9%), Streptococcus Sp., Pseudomonas sp. and Klebsiella were the other isolates.16 In this particular study all wound infections were considered and not specifically in implant infections. Classen7 at Salt Lake City in USA reported that of the 43 bacterial isolates from clean surgical wounds including Orthopaedics, Staphylococcus aureus was isolated in seven cases (16.3%); gram negative rods in six(14%); Enterobactercloaca in five(11.6%); Enterococcus in...
five (11.6%) and *Klebsiella pneumonia* in two (4.6%). They also found that the anaerobe, *Bacteroides fragilis* accounted for 14% of the infections. Sanderson in Middlesex, England, found *Staphylococcus aureus* being responsible for 35% of post-operative wound infections in hip implants, *staphylococcus epidermidis* 15%, Coliforms 25% while anaerobes and unnamed others accounted for 25%.

The purpose of this report was therefore to elucidate the pattern of bacteriological isolates, which are responsible for post-operative wound infections to identify their antimicrobial sensitivity pattern in our environment.

**MATERIALS AND METHODS**

In this prospective study of 4 years, all the patients admitted to the orthopaedic wards of the hospital were recruited. Patients with diabetes mellitus, obesity, carcinoma and patients on drugs such as steroids or cytotoxics were excluded. Wound swab was taken from the compound fractures and post operative pus discharge. Wounds were examined for infection on the day of admission to the orthopaedic wards, at discharge and subsequent follow-up visits at the outpatient clinic. Any patient who developed wound infection had his/her culture and sensitivity done.

The documentation of isolated organisms was based on the results of culture and sensitivity. Aerobic culture was carried out using Nutrient, blood and chocolate agar on each infected wound specimen. The antibiotic sensitivity patterns were carried out with Mueller-Hinton agar. This was done at Department of microbiology, IMS & SUM Hospital. All the isolated bacteria and antibiotic sensitivity pattern were document in both register and computer. These data were statistically analysed with SPSS 20 software.

**RESULT**

**Table 1:** Number of bacteria isolated from Orthopaedic wound discharge.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Bacteria</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><em>S. aureus</em></td>
<td>675</td>
<td>26.89</td>
</tr>
<tr>
<td>2</td>
<td><em>P. aeruginosa</em></td>
<td>285</td>
<td>11.35</td>
</tr>
<tr>
<td>3</td>
<td><em>Klebsiella Sp.</em></td>
<td>270</td>
<td>10.76</td>
</tr>
<tr>
<td>4</td>
<td><em>Acinetobacter Sp.</em></td>
<td>220</td>
<td>8.76</td>
</tr>
<tr>
<td>5</td>
<td><em>Citrobacter Sp.</em></td>
<td>125</td>
<td>4.98</td>
</tr>
<tr>
<td>6</td>
<td><em>Enterococci Sp.</em></td>
<td>100</td>
<td>3.98</td>
</tr>
<tr>
<td>7</td>
<td><em>Proteus Sp.</em></td>
<td>85</td>
<td>3.39</td>
</tr>
<tr>
<td>8</td>
<td><em>E. Coli</em></td>
<td>45</td>
<td>1.79</td>
</tr>
<tr>
<td>9</td>
<td>BYC</td>
<td>35</td>
<td>1.39</td>
</tr>
<tr>
<td>10</td>
<td>No growth</td>
<td>645</td>
<td>25.70</td>
</tr>
<tr>
<td>11</td>
<td>Contamination</td>
<td>25</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2510</td>
<td>100.00</td>
</tr>
</tbody>
</table>

In this prospective study, a total of 2510 orthopaedic wound samples were collected for culture and antibiotic sensitivity study. Among them, 645 samples did not show any growth in culture medium. Apart from this 25 samples were found to be contaminated. These samples were excluded from this study. This study revealed 1805 bacteria from the 2510 wound discharge samples. *Staphylococcus aureus* (26.89%) was the most commonly isolated organism in this study followed by *Pseudomonas aeruginosa* (11.35%), *Klebsiella Sp.* (10.76%), *Acinetobacter Sp.* (8.76%), *Citrobacter Sp.* (4.98%), *Proteus Sp.* (3.39%) and *E. coli* (1.79%). Apart from this, budding yeast cells (1.39%) were isolated (Table 1).

Based upon the standard guidelines it was observed that antibiotics are being prescribed empirically without knowing their resistance pattern. Such prescriptions can lead to an increase in the antibiotic resistance. Hence, commonly administered antibiotics were screened for their efficacy. In case of *S.aureus*, it was highly resistant to ceftriaxone (68.75%), where as it was least resistant to amoxyclav (3.93%). Though Piperacillin/tazobactam was preferred as the first line drug of choice for *P. aeruginosa*, but it was revealed in this study that the resistance pattern of this drug has increased to 41.46% because of indiscriminant use (Table 2).

After studying the resistance pattern of the commonly prescribed antibiotics it was deduced that many antibiotics were being administered even though their resistance pattern had increased. So antibiotics having good sensitivity pattern (selected 5 antibiotics) should be selected for initial use. The most sensitive antibiotics were Amikacin, Tigecycline, Amoxyclav, netilmycin and vancomycin (Fig 1).

![Figure 1: Sensitivity of antibiotics towards common organism isolated from the wound infections of orthopaedic department.](image-url)
Table 2: Antibiotic resistance pattern of isolated bacteria from Orthopaedic wound discharge.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>AMK</th>
<th>AMC</th>
<th>CEF</th>
<th>NOR</th>
<th>PIT</th>
<th>LNZ</th>
<th>OFL</th>
<th>CTR</th>
<th>CFM</th>
<th>VAN</th>
<th>NET</th>
<th>IC</th>
<th>CFS</th>
<th>TGC</th>
<th>CXM</th>
<th>IMP</th>
<th>CIP</th>
<th>MRP</th>
<th>CFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter Sp.</td>
<td>72.41</td>
<td>91.42</td>
<td>85</td>
<td>83.33</td>
<td>75.75</td>
<td>97</td>
<td>63.04</td>
<td>68</td>
<td>88</td>
<td>97</td>
<td>57</td>
<td>78.94</td>
<td>86.66</td>
<td>3.57</td>
<td>97</td>
<td>62.5</td>
<td>66.66</td>
<td>63.63</td>
<td>96</td>
</tr>
<tr>
<td>E. Coli</td>
<td>11.62</td>
<td>71.42</td>
<td>87.09</td>
<td>90.9</td>
<td>32.6</td>
<td>NA</td>
<td>44.04</td>
<td>28.88</td>
<td>82.35</td>
<td>97</td>
<td>16.66</td>
<td>88.09</td>
<td>96</td>
<td>2</td>
<td>91</td>
<td>20</td>
<td>92</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Citrobacter Sp.</td>
<td>44.44</td>
<td>65.21</td>
<td>71.42</td>
<td>61.53</td>
<td>52.63</td>
<td>NA</td>
<td>54.76</td>
<td>36</td>
<td>70</td>
<td>NA</td>
<td>46.15</td>
<td>71.28</td>
<td>87.4</td>
<td>5.88</td>
<td>89</td>
<td>16.66</td>
<td>66.66</td>
<td>79.23</td>
<td>NA</td>
</tr>
<tr>
<td>S. aureus</td>
<td>4.78</td>
<td>3.93</td>
<td>68.75</td>
<td>NA</td>
<td>35.44</td>
<td>13.26</td>
<td>24.59</td>
<td>27.77</td>
<td>17.5</td>
<td>20.51</td>
<td>98</td>
<td>20</td>
<td>97</td>
<td>3.28</td>
<td>66.66</td>
<td>66.66</td>
<td>98</td>
<td>47.72</td>
<td>59.26</td>
</tr>
<tr>
<td>Enterococci Sp.</td>
<td>25</td>
<td>52.38</td>
<td>49.22</td>
<td>41.22</td>
<td>49.22</td>
<td>NA</td>
<td>35.71</td>
<td>66.66</td>
<td>66.66</td>
<td>42.85</td>
<td>5</td>
<td>66.66</td>
<td>98</td>
<td>2.56</td>
<td>NA</td>
<td>7.22</td>
<td>20.16</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Klebsiella Sp.</td>
<td>37.5</td>
<td>70.21</td>
<td>63.33</td>
<td>63.33</td>
<td>53.33</td>
<td>NA</td>
<td>51.8</td>
<td>64.31</td>
<td>85.71</td>
<td>NA</td>
<td>48.22</td>
<td>65</td>
<td>19.22</td>
<td>17.07</td>
<td>75.22</td>
<td>94.32</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>29.78</td>
<td>58.06</td>
<td>97</td>
<td>97</td>
<td>41.46</td>
<td>97</td>
<td>49.35</td>
<td>56.33</td>
<td>87.5</td>
<td>51.36</td>
<td>63.34</td>
<td>33.33</td>
<td>65</td>
<td>50</td>
<td>93</td>
<td>23.33</td>
<td>51.60</td>
<td>66.66</td>
<td>91.33</td>
</tr>
<tr>
<td>Proteus Sp.</td>
<td>46.15</td>
<td>71.42</td>
<td>62.5</td>
<td>66.66</td>
<td>9.09</td>
<td>NA</td>
<td>58.82</td>
<td>49.18</td>
<td>97</td>
<td>NA</td>
<td>83.33</td>
<td>28.57</td>
<td>19</td>
<td>12.5</td>
<td>NA</td>
<td>30</td>
<td>81.33</td>
<td>96.33</td>
<td>NA</td>
</tr>
</tbody>
</table>
DISCUSSION

Wound infections not only pose a problem to the surgeon but to all those who have a stake in the care of orthopaedic and trauma patients. It is associated with increased morbidity, cost of health care and at times can be catastrophic. The microbiology of post-operative wound infection in implants has changed very little over time except1–3 for the emergence of resistant organisms. Staphylococcus aureus was the most commonly isolated microorganism in this study accounting for 26.89%. It was similarly most common in various other reports worldwide. The relative rates however vary from centre to centre. At the National Orthopaedic Hospital Lagos, Onche found it accounted for 71.4% of his isolates while in Zaria, North Central Nigeria, Mbamali isolated staphylococcus aureus in 60% of patients while Classen in USA noted that it occurred in 16.3% of their cases. The picture was however different at Jos where Oguachuba found Proteus sp to be the most common isolate with a rate of 41.9% followed by Staphylococcus aureus with 25.6%. What is pertinent here is that at the Jos centre, the wound was unclassified. Other important isolates in this study were Escherichia coli and Proteus species.

Amikacin followed by tigecycline were found to be most effective against Staphylococcus aureus. Traditionally potent cephalosporins were highly resisted by it. This is because of the emergence of highly resistant strains of Staphylococcus aureus in hospital settings. Antibiotics are still sold across the counter in pharmaceutical stores and by patent medicine vendors.

The gram-negative aerobic rods like E. coli, Pseudomonas, Proteus and Klebsiella were found to be sensitive to Amikacin while essentially resistant to the cephalosporins tested.

This study has highlighted three issues in the microbiology of orthopaedic wound infections. Firstly, Staphylococcus aureus remains the most important microorganism responsible for post-operative wound infection in implants and prostheses.

Secondly, resistant strains of organisms have emerged and previously reserved drugs have become first line in treatment of these infections. Thirdly, anaerobic organisms remain important isolates where such cultures are feasible. Finally, remote site infections should be eradicated before undertaking implant or prosthetic operations.

CONCLUSION

The results obtained from this study have far reaching consequence with respect to health care delivery and socioeconomic status of individual. No doubt, antibiotics have been used empirically at the out set of the management of a patient having a wound either following trauma or coming with infection, without any culture and sensitivity. This study, moreover throws light on nearly sensitive antibiotic administration at the beginning of such management.

This would be most appropriate in reducing morbidity, mortality, prolonged hospital stay and increased health care costs.

Acknowledgement: We are indebted to technicians of Department of Microbiology, IMS and SUM hospital for their continuous support in this study.

REFERENCES


8. National Academy of Sciences, National Research Council, Division of Medical Sciences, Ad Hoc Committee on trauma, post-operative wound infection, the influence of ultraviolet irradiation on the operating room and of various other factors. Ann Surg, 160 (suppl 2), 1964, 1–192.


