Review on Nutraceutical Potential of Cassia occidentalis L.
– An Indian Traditional Medicinal and Food Plant

S. Manikandaselvi¹, V. Vadivel², P. Brindha³*

¹PG and Research Department of Biochemistry, Sengamala Thayaar Educational Trust Women’s College, Mannargudi, Tamilnadu, India.
²Centre for Advanced Research in Indian System of Medicine, SASTRA University, Thanjavur, Tamilnadu, India.
*Corresponding author’s E-mail: brindha@carism.sastra.edu

Accepted on: 01-03-2016; Finalized on: 31-03-2016.

ABSTRACT

Cassia occidentalis L. is an important member of plant family Fabaceae. C. occidentalis is known as ‘kasamarda’ and it has been mentioned in various nighandus viz. Rajnighantu, Dhanwantari, Bhavaprakasa, Rajballa. It has active ingredients such as anthraquinones derivatives and their glycosides. C. occidentalis extract is used to cure eye inflammations in Ayurveda. It is also used in Jamaican folk medicines for curing diarrhoea, dysentery, constipation, fever, cancer, eczema and venereal diseases. Seeds of C. occidentalis are good source of alternative plant proteins, rich in vitamin B3 and also abundant in Ca, K, P, Na, Mg, Fe, Zn, Cu but low in Mo, Co, Se, S and F. The amino acid profile revealed a high concentration of leucine, histidine, proline and glycine. It is a main ingredient of Liv. 52. Herbolax, a polyherbal formulation that is commonly used in treating constipation. A new indigenous metabolic corrective for newborns and infants called ‘Bonissan’ is also made up of C. occidentalis (0.5 mg/5 ml), which helps to bring immediate relief from discomfort caused by gastric wind. Pharmacological investigations have revealed several biological activities such as antioxidant, analgesic, antipyretic, anti-inflammatory, hepatoprotective, anti-malarial, anti-diabetic, anti-cancer and antidepressant activities of C. occidentalis. Detoxification of the seeds is essential through processing before its use in human/animal diet. This review article is an attempt to present the overview of pharmacognostical, phytochemical, nutraceutical and biological studies reported on C. occidentalis.

Keywords: C. occidentalis, Nutritional value, Pharmaceutical use, Nutraceutical, Biological properties.

INTRODUCTION

Cassia occidentalis L. is an annual or perennial plant which is used in several traditional medicines to cure various diseases. C. occidentalis is a spiny herb grows all over in India in shade as well as under open condition (Figure 1). Generally found up to an altitude of 1,000 m in Himalaya and wild throughout the plains on waste lands or in the coastal areas. It is also found in deltaic region of western, eastern and southern India². Found particularly in the seacoast along with the hotter parts of India, Burma and Sri Lanka. It is also grown as an ornamental plant². This plant is called in different regional/vernacular languages like Hindi (Badikasondi, Chakunda, Kasonda), English (Coffee senna, Negro coffee, Rubbish cassia, Stinking weed, Foetid cassis), Sanskrit (Kasamarda), Urdu (Kasonji), Tamil (Nattamtakarari, Ponthagarai, Paeravirai, Ponnvirai, Paeravirai, Attutakarai), Bengali (Kalkashunda), Gujarati (Kasodari, Kasundari, Kasuvayee, Hikal), Kannada (Doddatagase, Anecogate, Doddatagache), Malayalam (Natramtakara, Ponnviram, Natrum-takara, Ponnevearam) and Telugu (Kasinda, Peddakasinda). Botanical synonyms of this species are Senna occidentalis Roxb., Senna occidentalis (L.) and Cassia foetida Pers.

In this review, an attempt was made to collect all possible ethnobotanical and nutraceutical potential of C. occidentalis with reference to its food and medicinal applications. A baseline survey was conducted during 2011-2015 and information’s about C. occidentalis were collected through semi-structured interviews and discussion with the local healers, elderly and experienced people. Additionally, all available literature on C. occidentalis was reviewed and studied through online search engine Scopus and Google Scholar. Literature collection was done from 1965 to 2015 and all the information were compiled and presented in this review work.

Figure 1: Morphology of Cassia occidentalis L.

Taxonomic position

Kingdom: Plantae
Division : Magnoliophyta
Sub Division : Spermatophyta

International Journal of Pharmaceutical Sciences Review and Research
Available online at www.globalresearchonline.net
© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Cassia
Species: occidentalis

Distribution

C. occidentalis is a spiny herb grows all over in India in shade as well as under open condition. Generally found up to an altitude of 1,000 m in Himalaya and wild throughout the plains on waste lands or in the coastal areas. It is also found in deltaic region of western, eastern and southern India. Found particularly in the seacoast throughout the hotter parts of India, Burma and Sri Lanka and it is also grown as an ornamental plant.

Botanical description

Leaves are evergreen, lanceolate, compound, glossy leaf surface, deep tap root system, stem is hard and woody, Dicot seed type with characteristic odour and bitter taste. Flowers are yellow in colour with 1 to 2 cm diameter arranged in raceme type inflorescence, axillary and also forming terminal, bracts are caduceus. Fruits are flat pods, 10-12 cm long with 10-30 seeds. Aareolate seeds are pointed at end and blunt at the other.

Pharmacognostic details

Foliage: Evergreen
Roots: Deep roots, tap roots
Type of stem: Hard woody
Leaf type: Lanceolate or ovate-lanceolate
Leaf arrangement:Compound
Leaf colour: Green
Leaf surface: Glossy
Seed type: Dicot
Odour: Characteristic
Taste: Bitter

Flower: Yellow with 1 to 2 cm diameter, inflorescence Racemes few-flowered, axillary, and also forming terminal panicle; bracts caduceus.

Fruit: Flat pods, 10-12 cm long with 10-30 seeds. Aareolate seeds are pointed at end and blunt at the other. Flowering in sharad and fruition in Hemantaritu.

Major chemical constituents

The main plant chemicals in *C. occidentalis* include: achrosin, aloe-emodin, emodin, anthraquinones, anthrones, apigenin, aurantiobutisin, campesterol, cassioliin, chryso obtusin, chrysophanic acid, chrysarobin, chrysophanol, chrysoeriol, emodin, essential oils, funiculinos, galactopyranosyl, helminthosporin, islandicin, kaempferol, lignoceric acid, linoleic acid, linolenic acid, mannotil, mannoxyranosyl, matteucinol, obtusifolin, obtusin, oleic acid, physcion, quercetin, rhamnosides, rhein, rubrofusarin, sitosterols, tannins, and xanthorine. The study of phytochemicals of *C. occidentalis* reveals that the nature and amount of phytochemicals vary according to climate. For example stems, leaves and the root bark of the plant from Ivory Coast, Africa contain small amount of saponins, no alkaloids, sterols, triterpenes, quinines, tannins and flavonoids. However, a large amount of alkaloids were found in the stem, leaves and fruits from Ethiopia. Presence of various chemical constituent in different parts of *C. occidentalis* was reported (Table 1 and Figure 2).

Traditional uses

C. occidentalis is regarded as ‘Edible weeds of Agriculture or ‘Famine food’. Its infusion is given against the white discharge. In Mali, *C. occidentalis* is used as ingredient in a malarial formulation based on a traditional recipe comprising leaf of *C. occidentalis* leaves of *Lippia chevalieri* and flower heads of *Spilanthes oleraceae*. Decotion of *C. occidentalis* roots with black pepper is useful in filariasis. In the Malayagiri hills, a decoction is made from 15 leaves each of *C. occidentalis*, *Glycosmis pentaphylla* and *Vitex negundo* and used for bathing the new born baby to make the baby immune to skin diseases. According to ‘Bhavaprakasa’, Kasamardha (*C. occidentalis*) is used in constipation, and is stated that leaves, roots and seeds are useful as purgative. In folkloric medicine, seed powder (half a tea spoon) is used to cure fever while two table spoons of leaf juice mixed with honey cures cough. For intestinal gas half a cup of leaf decoction is taken twice daily and paste of leaf is applied for skin diseases.

Uses in modern medicine

Various biological activities and medicinal properties of *C. occidentalis* were shown in Table 2. *C. occidentalis* is widely consumed by the local people as a substitute for coffee. It is an ingredient in Himoliv, a polyherbal Ayurvedic formulation.

It is also proved that it prevents the carbon tetra chloride-induced hepatotoxicity in rats. Based on the observation they suggested that Himoliv increases the protective enzymes superoxide dismutase (SOD) and catalase in liver homogenate of rats. It is also present in other polyherbal formulation Liv.52 tablet and syrup which are extensively used for Hepatitis A. *C. occidentalis* also used in Senkot, Bonnisan, Geriforte, Herbolax, Liv.52 drops, Digyton, Geriforte Aqua, Geriforte Vet, Liv.52 Vet (Companion), Liv.52 Vet and Liv.52 DS.
Table 1: Major chemical constituents reported in *Cassia occidentalis*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parts studied</th>
<th>Chemical constituents identified</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flower</td>
<td>Cassiaoccidentalin A, Physcion, Emodine, Physcion1β-D-Glucopyranoside and β-Sitosterol</td>
<td>Niranjan and Gupta(^8)</td>
</tr>
<tr>
<td>2</td>
<td>Leaf</td>
<td>Chryosophenol, Emodin and their Glycosides, Physcion, Metteucinol-7-rhamnoside; Jaceidin-7-rhamnoside and 4, 4, 5, 5-tetrahydroxy-2,2-dimethyl-1,1-bianthraquinone 4 and Flavonoid Glycosides</td>
<td>Tiwar and Singh(^9), Ogunkunle and Ladejobi(^10)</td>
</tr>
<tr>
<td>3</td>
<td>Root</td>
<td>PinSELin (cassialoin), Rhein, Aloe emodin and their glycosides; Chrysophanol, Physcion, Emodin, Islandicin, Helminthosporin, Xanthorin, Sitosterol, Campesterol, Stigmasterol, 1,8-dihydroxyanthraquinone; 1,7-dihydroxy-3-methoxyxanthone; α-hydroxyanthraquinone and Quercetin, Questin, Germichryside, Methyl germitorosone, Singueanol-I, PinSELin; Bis(tetra hydro) anthracene derivatives; Occidentalol-1 and Occidentalol-11, C-glycosidic flavonoids, and Cassia occidentalis A, B and C flavonoids.</td>
<td>Rai and Shok(^11), Kitanaka(^12)</td>
</tr>
<tr>
<td>4</td>
<td>Seeds</td>
<td>Anthraquinones, 1,8-dihydroxy-2-methylantraquinone; 1,4,5-trihydroxy-7-methoxy-3-methylantraquinone; Physcion& its glucoside, Rhein, Aloeemodin, Chrysophanol& its glycoside, N-methyl-morpholine; α-glucosides of Campesterol& β-sitosterol; and a Galactomannan</td>
<td>Ryan et al.(^13), Bruere(^14)</td>
</tr>
<tr>
<td>5</td>
<td>Pods</td>
<td>3,5,3,4-tetrahydroxy-7-methoxyflavone-3-O-(2-rhamnosyl glucoside); 5,7,4-trihydroxy-3,6,3-trimethoxyflavone-7-O-(2"-rhamnosylglucoside)</td>
<td>Purwar et al.(^15)</td>
</tr>
</tbody>
</table>

Figure 2: Phytochemicals identified in *Cassia occidentalis*
Table 2: Biological activity reported on *Cassia occidentalis*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parts studied</th>
<th>Biological activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methanol, aqueous, benzene, petroleum ether and chloroform extracts</td>
<td>Antimicrobial activity</td>
<td>Arya	extsuperscript{27}</td>
</tr>
<tr>
<td></td>
<td>Ethanol and water extract of leaf</td>
<td></td>
<td>Sadiq	extsuperscript{28}</td>
</tr>
<tr>
<td></td>
<td>Ethanol and water extract of flower</td>
<td></td>
<td>Daniyana	extsuperscript{29}</td>
</tr>
<tr>
<td></td>
<td>Anthraquinones fraction of leaf, pods, flowers and callus</td>
<td></td>
<td>Jain	extsuperscript{30}</td>
</tr>
<tr>
<td></td>
<td>Leaf extract</td>
<td></td>
<td>Mohammed	extsuperscript{31}, Basri and Fan	extsuperscript{32}</td>
</tr>
<tr>
<td>2</td>
<td>Methanolic extract of seeds of whole plant</td>
<td>Antioxidant activity</td>
<td>Mehta	extsuperscript{33}</td>
</tr>
<tr>
<td></td>
<td>Ethanolic extract of seeds of whole plant</td>
<td></td>
<td>Sreejith	extsuperscript{34}</td>
</tr>
<tr>
<td></td>
<td>Chrysophanol and methanolic fraction of leaf</td>
<td></td>
<td>Rani	extsuperscript{35}</td>
</tr>
<tr>
<td>3</td>
<td>Aqueous and ethanolic extracts of leaf</td>
<td>Hepatoprotective activity</td>
<td>Jafri	extsuperscript{36}</td>
</tr>
<tr>
<td>4</td>
<td>Ethanolic, dichloromethane and lyophilized aqueous extracts of root bark</td>
<td>Antimalarial activity</td>
<td>Tona	extsuperscript{37}</td>
</tr>
<tr>
<td>5</td>
<td>Leaf</td>
<td>Anti-inflammatory activity</td>
<td>Sadique	extsuperscript{38}</td>
</tr>
<tr>
<td>6</td>
<td>Ethanolic extract of Senkot tablets (Cassia occidentalis concentrate)</td>
<td>Anti-mutagenic/anti-carcinogenic activity</td>
<td>Sharma	extsuperscript{39}</td>
</tr>
<tr>
<td></td>
<td>Aqueous and hydro-alcoholic extracts of whole plant</td>
<td></td>
<td>Bhagat and Saxena	extsuperscript{40}</td>
</tr>
<tr>
<td>7</td>
<td>Ethanolic extract of whole plant</td>
<td>Anti-allergic activity</td>
<td>Ajagbonna	extsuperscript{41}</td>
</tr>
<tr>
<td>8</td>
<td>Aqueous extract of the leaf</td>
<td>Muscle relaxant effect</td>
<td>Emmanuel	extsuperscript{42}</td>
</tr>
<tr>
<td>9</td>
<td>Chrysophanol extracted from the leaf</td>
<td>Wound healing activity</td>
<td>Sheeba	extsuperscript{43}</td>
</tr>
<tr>
<td>10</td>
<td>A quaternary base picrate isolated from the leaf</td>
<td>Cholinergic effect</td>
<td>Bhattacharya	extsuperscript{44}</td>
</tr>
<tr>
<td>11</td>
<td>Ethanolic and aqueous extracts of the leaf</td>
<td>Antidepressant activity</td>
<td>Shafeen	extsuperscript{45}</td>
</tr>
<tr>
<td>12</td>
<td>Ethanol extract of Cassia occidentalis</td>
<td>Larvicidal activity</td>
<td>Dhandapani and Kadarkarai	extsuperscript{46}</td>
</tr>
<tr>
<td></td>
<td>Cassia occidentalis seed oil</td>
<td></td>
<td>Lienard	extsuperscript{47}</td>
</tr>
<tr>
<td>13</td>
<td>Whole plant extract</td>
<td>Immuno-suppression activity</td>
<td>Bin-Hafeez	extsuperscript{48}</td>
</tr>
<tr>
<td>14</td>
<td>Ethanolic and aqueous extracts of leaf</td>
<td>Anti-anxiety and Anti-depressant activity</td>
<td>Shafeen	extsuperscript{45}</td>
</tr>
<tr>
<td>15</td>
<td>Ethanolic and aqueous extracts of leaf</td>
<td>Analgesic and anti-pyretic activity</td>
<td>Sini	extsuperscript{49}</td>
</tr>
<tr>
<td>16</td>
<td>Aqueous, petroleum ether and chloroform extracts of leaf</td>
<td>Anti-diabetic activity</td>
<td>Verma	extsuperscript{50}</td>
</tr>
<tr>
<td></td>
<td>Methanolic and aqueous extracts of leaf</td>
<td></td>
<td>Emmanuel	extsuperscript{42}</td>
</tr>
<tr>
<td></td>
<td>Butanolic and aqueous extracts of the leaf</td>
<td></td>
<td>Singh	extsuperscript{51}</td>
</tr>
</tbody>
</table>

In Brazil, hydroalcoholic extract of *C. occidentalis* stem and leaf has been marketed by Pharmaceutical Laboratory (LAPERLI) with commercial name of Cassia Virginica	extsuperscript{28} and has been indicated for the treatment of flu, fever, erysipelas, febrifuge and as analgesic, hepatoprotective and diuretic	extsuperscript{26}.

Ayurvedic description

Charaka omitted it among the *Ganas, Sushruta* and *Vagbhata* have included it under *Sursadiqana*. *Vagbhata* denoted it with a synonym *kasaghna*. The drug Kasamardha is used in the indigenous system of medicine since long time. Charak mentioned its use for curing cough. It has been mentioned in various nighantas viz. Rajnighantu, Dhanwantari, Bhavaprakasha and Rajballabha. Rasa (taste) is tikta (bitter), madhura, veerya (potency) is ushna (hot), vipaka-Katu guna (properties) is laghu (light), ruksha (dry), tikshna (sharp). Doshakarma - Vata, Pitta and Kapha (Vata is the impulse principle necessary to mobilize the function of the nervous system; Pitta is the energy principle which uses bile to direct digestion and hence metabolism into the venous system; Kapha is the body fluid principle which relates to mucous, lubrication and the carrier of nutrients into the arterial system). It has the properties of rogaghna (Kasa, Swasa, Ajeerna,Visha, Raktavikara, Twakvikara), karma (Vrishya, Rochana, Pachana, Grahi, Kanyasodhana, Krimighna), karm (Kasaghna, Mutrala, Kusthaghna, Rechana), rog (Kasa, Swasa, Hikka, Bukurakasa, Agnimandya, Udararroga, Pittavikaravibandha, Apasmar, Apantraka,
Akshepaka, Kushta, Visharpaa, Shlipada, Vrana, Dadru, Charmavikara, Murakrchrha and Ikshumeha).

Nutraceutical values

Seeds of *C. occidentalis* are good source for alternative plant proteins. Proximate composition results showed high dry matter (92.50%), crude protein (29.54%) and crude fiber (10.18%), but low ether extract, nitrogen free extract, ash and calorific values. The vitamin content data revealed poor vitamins B2, B6, C and A but the seeds were rich in vitamin B1 (1.85 mg/100 g) values compared to other seeds. The seeds were also abundant in calcium (960 mg/100 g), potassium (1,200 mg/100 g), phosphorus (810 mg/100 g), sodium (600 mg/100 g), magnesium (640 mg/100 g), iron (234.60 mg/100 g), zinc (53.12 mg/100 g) and copper (10.48 mg/100 g) but low in molybdenum, cobalt, chromium, selenium, sulphur and fluorine. The amino acid profile revealed a high concentration of leucine (7.60 g/100 g protein), histidine (2.11 g/100 g protein), proline (2.33 g/100 g protein) and glycine (4.11 g/100 g protein) while the rest of the amino acids were of low concentration in the raw seed. Detoxification of the seeds is essential through processing before its use in food/feed.

CONCLUSION

The scientific research on *C. occidentalis* suggests a huge nutraceutical potential of this plant. It is strongly believed that detailed information as presented in this review on the phytochemical, nutritional and various biological properties of this plant. Raw seeds might have some toxicological side effects. After proper processing, identification and removal of the harmful properties of seeds, they may be utilized to prepare a good, nourishing and Ayurvedic coffee. At the same time, *C. occidentalis* could be further exploited in the future as a source of useful phytochemicals and nutritional compounds for the nutraceutical industry.

Acknowledgement: Authors extend a deep sense of gratitude to the Management and Administrative authorities of SASTRA University, Thanjavur for their encouragement and also one of the Authors (SM) thank the Management, Sengamala Thayaar Educational Trust Women’s College, Mannargudi for their motivation and support.

REFERENCES

