
Int. J. Pharm. Sci. Rev. Res., 38(1), May – June 2016; Article No. 25, Pages: 149-157                                                           ISSN 0976 – 044X  

 

 

International Journal of Pharmaceutical Sciences Review and Research 
Available online at www.globalresearchonline.net  

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited. 
 

149 

                                                                                                                            

 
 

Bhagya Rajendrana#, Loganathan Chitrab 
aResearch and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India. 

bDepartment of Biochemistry, Periyar University, Salem, Tamil Nadu, India. 
*Corresponding author’s E-mail: bhagyaabc7@gmail.com 

 
Accepted on: 29-03-2016; Finalized on: 30-04-2016. 

ABSTRACT 

Bipolar disorder (BD) is a highly heritable neuropsychiatric disorder associated with disrupted circadian rhythms. In mammals, 
circadian rhythms are regulated endogenously by circadian clock genes. At cellular level, oscillation of various clock genes required 
for maintenance of biological rhythms to an approximate 24 hour cycle is generated by transcriptional autoregulatory feedback 
loops. Secondary to this, post-translational modifications like phosphorylation, SUMOylation, acetylation and methylation of clock 
proteins play a significant role in regulating circadian rhythms. Several single nucleotide polymorphism (SNP) association studies and 
genome-wide association studies (GWAS) have identified the involvement of clock gene variants in BD. The therapeutic efficacy of 
mood stabilizers and antidepressants used to treat BD can be partially explained by their action on molecules regulating circadian 
rhythms. This review details the biology of circadian rhythms, posttranslational modifications of clock proteins that regulate the 
rhythms, evidences of clock gene variants associated with BD and effects of treatment of BD on circadian clock. 

Keywords: Bipolar disorder, Circadian rhythms, Clock genes. 

 
INTRODUCTION 

ipolar disorder (BD) also known as manic-
depressive illness is a chronic, heritable 
neuropsychiatric disorder with complex origins in 

gene-environment interactions. The characteristic 
features of BD are extreme shifts in mood, energy and 
functioning. The shifts in mood are not merely related to 
life events. Genetic, physiological, psychological and 
environmental factors contribute to the illness. The 
United States has the highest lifetime rate of BD at 4.4%, 
and India the lowest, with 0.1%.1 BD is a polygenic 
disorder with heritability estimate at about 85%.2 
Disrupted circadian rhythm is shown to be associated 
with BD. Hence, the biology of circadian rhythm and 
association of polymorphism of circadian rhythm genes 
with development of BD has been elaborated. 

Circadian Rhythms 

The term “circadian” which derives from the Latin phrase 
“circa diem” meaning “about a day” refers to the 
biological processes that display rhythms during a period 
close to 24 hours. Circadian rhythms enable living beings 
to adapt to their periodically varying environment, 
through entrainment of rhythms. Entrainment refers to 
the process where the circadian pacemaker resets itself in 
response to light to maintain synchrony of the clock to 
the 24 hour day. A pacemaker is a functional entity 
capable of self-sustaining oscillations that synchronizes 
other rhythms. Circadian clocks are capable of functioning 
autonomously, although they are entrained by 
environmental signals like day/night cycles.3 The light-
dark cycle of the solar day plays a vital role in regulating 
circadian rhythms.4 The conservation of circadian system 
is observed since the time plants diverged from the 

common lineage with animals and fungi.5-7 The three 
major circadian pacemakers in mammals are the 
suprachiasmatic nuclei (SCN) of the anterior 
hypothalamus, the retina and the pineal gland. The SCN is 
the dominant circadian pacemaker8 which synchronizes 
to the environment by light input from melanopsin 
present in the ganglion cells of the retina9 through the 
retinohypothalamic tract.10 Clocks are also present in 
several other brain regions11-13 and peripheral tissues 
(e.g., liver, kidneys, heart, muscle).14,15 Although the 
peripheral clocks have the capability of generating 
oscillations independently, the SCN clock synchronizes 
them.6,16 Circadian rhythms regulate behaviour and 
physiological functions like sleep-wake cycles, hormonal 
secretion, body temperature and metabolism.17,18 
Circadian rhythmicity is cell-autonomous, in both SCN 
neurons and non-SCN cells.19,20 Genetic variants in clock 
and clock-related genes display abnormal circadian 
rhythms.21,22 The circadian rhythms in SCN and peripheral 
tissues are regulated by the cellular circadian clocks 
involving transcription factors and their modulators. 

Cellular Circadian Clock Network 

The cellular circadian clock comprises of clock genes 
which regulate and are themselves regulated by 
transcription-translation feedback loops to adjust 
rhythms to an approximate 24 hour cycle.23,24 The 
positive loop of the mammalian clock system comprises 
of circadian locomotor output cycles kaput (CLOCK) or 
Neuronal period-aryl hydrocarbon receptor nuclear 
translocator – single minded (PAS) domain protein 2 
(NPAS2) and two aryl hydrocarbon receptor nuclear 
translocator-like (ARNTL/ARNTL2) proteins. These 
proteins are members of basic helix–loop–helix (bHLH) 
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Period-Arnt-Single-minded (PAS) domain transcription 
factor family.25 The circadian rhythm cycle begins when 
the transcription activator CLOCK dimerizes with ARNTL 
to initiate the cellular circadian oscillation. CLOCK and 
ARNTL heterodimerize and bind to DNA elements called 
E-boxes (CACGTG), E1-boxes (CACGTT)26-29 Noncanonical 
E-box (CATGTG)30 and EL-box (CACGAG)31 in the promoter 
of their target genes such as the clock genes PERIOD 
(isoforms PER1, PER2, and PER3) and CRYPTOCHROME 
(isoforms CRY1 and CRY2) to activate their transcription 
during the daytime. Their protein products PER and CRY 
form a dimer in the cytoplasm and translocate into the 
nucleus at night, where they interact directly with CLOCK-
ARNTL to repress their own transcription.5,32-36 
Consequently, PER and CRY levels fall as the PER-CRY 
repressor complex is targeted for degradation by specific 
E3 ubiquitin ligase complexes37-39 and the negative 
repression is relieved resulting in CLOCK-ARNTL activating 
a new round of transcription to begin the circadian cycle 
anew. This cell autonomous, auto regulatory 
transcriptional feedback loop takes about 24 hours to 
complete and forms the core mechanism of the circadian 
clock in mammals.40 

The primary loop of circadian cycle is accompanied by 
two adjoining loops. The first adjoining loop involves Rev-
erbα/β or NR1D1/2 and RORα/β genes which encodes for 
orphan nuclear receptor. NR1D1/2 protein binds to 
retinoic acid-related orphan receptor element (RORE) 
within the promoter region of ARNTL gene and represses 
its transcription whereas ROR proteins compete for the 
same site and activate its transcription.41,42 Similar to CRY 
and PER genes, transcription of Rev-erb α/β and ROR α/β 
genes is activated by CLOCK/ARNTL heterodimers acting 
through E-box enhancers in their promoters. Unlike 
CRY/PER complexes which repress their own expression 
by acting directly on CLOCK/ARNTL heterodimers, REV-
ERBα inhibits its own transcription in an indirect manner 
by repressing transcription of its activator, ARNTL. 
Furthermore, as a target of CLOCK/ARNTL-mediated 
activation, Rev-erbα transcription is also repressed by the 
inhibitory action of CRY/PER complexes on 
CLOCK/ARNTL.41 Together these processes terminate 
REV-ERBα-mediated inhibition of ARNTL expression such 
that ARNTL accumulates at the proper time to 
heterodimerize with CLOCK, translocate to the nucleus, 
and initiate a new round of transcription as CRY-PER 
levels decline. Indeed, appropriately timed circadian 
nuclear accumulation of CLOCK/ARNTL is mainly ARNTL-
dependent.41,42 

The second adjoining loop of circadian cycle involves the 
proline and acidic amino acid-rich domain basic leucine 
zipper (PAR bZip) transcription factors like, D-site of 
albumin promoter binding protein (DBP), thyrotroph 
embryonic factor (TEF), hepatic leukemia factor (HLF), the 
bZip protein, nuclear factor interleukin-3-regulated gene 
(NFIL3, also known as E4BP4), DEC1 [basic helix loop helix 
(BHLHE40) protein] and DEC2 (BHLHE41), all of which are 
transcriptional targets of CLOCK-ARNTL.6,24,43 These 

factors bind to the D-box element of circadian clock genes 
and regulate their transcription.44 In general, the 
transcription of these gene families is driven by 
ARNTL/CLOCK via E-box sequences. The D-box activators 
then further drive the transcription of PER, Rev-erbα/β 
and RORα/β. Activation of the RRE by RORα/β feeds back 
to drive the transcription of ARNTL/CLOCK, as well as the 
transcription of the E4BP4. E4BP4 is a transcriptional 
repressor that binds at the D-box sequence and may 
further regulate PER and CRY proteins. It is speculated 
that a particular target gene can alternatively bind PAR 
bZip transcription factors or the repressor E4BP4, 
allowing its precise transcriptional regulation.The genes 
in the D-box loops enable the circadian oscillations to be 
more robust and add precision to the period.42,45 The 
three binding elements namely E-box in the morning, D-
box in the day, and RRE elements in the evening together 
provide the necessary delay to cycle at near 24 hour.46,47 

Post-Translational Modifications of Clock Proteins 

The “core” circadian clock consists of 18 genes namely 
ARNTL1/2, CLOCK, NPAS2, PER1/2/3, CRY1/2, NR1D1/2, 
RORA/B/C, DEC1/2, casein kinases-1δ/ε (CK1D/E)28 and 
about 343 genes modulate circadian rhythms.48 Several 
clock controlled genes oscillate rhythmically in some 
tissues. In addition to these core transcriptional 
mechanisms, circadian rhythms are regulated by post-
translational modifications of clock proteins. 

Phosphorylation 

Phosphorylation of clock proteins by CK1δ/ε and glycogen 
synthase kinase 3 beta (GSK3β) proteins are necessary to 
maintain the stability, activity, binding partners, and 
subcellular localization of clock proteins.49 GSK3β 
phosphorylates timeless (TIM),50,51 CRY2,52,53 PER254 and 
NR1D1.

54 The importance of the post-translational 
regulation within the core mechanism of the circadian 
clock is supported by the fact that mutations in CK1δ/ε 
result in altered kinase activities and cause shorter 
circadian periods in mammals. Phosphorylation of PER 
and CRY proteins by CK1δ/ε and GSK3β leads to its 
ubiquitination and proteasomal degradation.52,55-58 In 
particular, the role for CKIε in PER protein 
phosphorylation, nuclear entry, and turnover has been 
clearly demonstrated.56 Degradation of the negative limb 
proteins PER and CRY is required to terminate the 
repression phase and restart a new cycle of transcription. 
Hence, stability/degradation rate of the PER and CRY 
proteins is crucial in determining the period of the clock. 
Apart from PER and CRY proteins, recent studies suggest 
the involvement of phosphorylation of CLOCK and ARNTL 
in regulating circadian rhythms. GSK3β phosphorylates 
ARNTL which controls the stability of the protein and the 
amplitude of circadian oscillation.59 ARNTL was shown to 
be a substrate for CK1ε56 and dimerization of ARNTL with 
CLOCK through the PAS domains is required for these 
phosphorylation events and for subsequent 
transactivation.23 Phosphorylation by the same kinase has 
opposite effects for different clock substrates (For 
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example, phosphorylation by CK1 δ/ε leads to 
degradation of PER but stabilization of ARNTL). In 
agreement with the model outlined above, ARNTL 
phosphorylation may enhance transactivation at E-box 
sites.56 This model is also supported by the fact that 
phosphorylated forms of ARNTL are predominantly found 
in the nucleus at the time of maximal transcriptional 
activity of CLOCK/ARNTL.35,55,60,61 In addition it has been 
found that, negative loop protein CRY can blunt the 
phosphorylation of ARNTL and shift the ratio of 
phosphorylated/unphosphorylated forms of ARNTL 
towards a predominance of unphosphorylated 
(transcriptionally inactive) form. Through this action, CRY 
may interfere with the transactivation of CLOCK/ARNTL. 
CRY represses the activity of CLOCK-ARNTL to maintain 
the circadian rhythmicity which indicates that 
transcriptional feedback is required for mammalian clock 
function.62 

Sumoylation 

The process of tagging small ubiquitin-related modifier 
protein (SUMO) to lysine residues of ARNTL called as 
SUMOylation is a reversible posttranslational 
modification controlled by an enzymatic pathway which is 
essential to maintain the rhythmicity of the clock. ARNTL 
is sumoylated on a highly conserved lysine residue 
(Lys259). SUMOylation of ARNTL requires and is induced by 
CLOCK.60 

Acetylation 

Acetylation of proteins is another essential phenomenon 
in regulating the clock. CLOCK acetylates non-histone 
substrate, like its own binding protein ARNTL at a highly 
conserved Lys537 residue. CLOCK-ARNTL dimerization is 
essential for this process. ARNTL acetylation facilitates 
binding of CRY1 to CLOCK–ARNTL complex and promotes 
transcriptional repression.63 The chromatin remodeling 
necessary for cyclic transcriptional activity exerted by 
CLOCK-ARNTL is achieved by rhythmic 
acetylation/deacetylation of histones (H3 and H4) at 
multiple clock target genes.27,64 Histone 
acetyltransferases (HATs) proteins acetylate histones to 
enable the chromatin to open up. Histone deacetylases 
(HDACs) deacetylate histones, locking the chromatin such 
that it is not accessible to the transcriptional machinery. 
The CLOCK protein itself possesses a HAT domain. This 
suggests that CLOCK may be both necessary and sufficient 
for histone acetylation. HAT activity of the CLOCK and 
chromatin remodelling are essential for the core clock 
mechanism.65 Further, ARNTL enhances HAT function of 
CLOCK. 

Methylation 

Methylation could be another histone modification which 
is important for clock function.66-68 The CLOCK-ARNTL 
complex recruits the methyl transferase called MLL1 to 
cyclically methylated histone H3 and HDAC inhibitor ARID 
domain - containing histone lysine demethylase 1α 
(JARID1α) to facilitate transcriptional activation.67,68 

Circadian rhythms and BD 

The role of circadian system in BD is substantiated by 
several studies. Disruption in circadian rhythms leads to 
increased incidence of many diseases, such as cancer and 
mental illness.69 Disrupted circadian rhythms could 
contribute directly to the pathophysiology of BD.70-73 BD 
patients exhibit cyclicity of mood and sleep disturbances 
suggesting the possibility of clock dysfunction.73-75 There 
are abnormalities in circadian alignments in BD patients.76 
Mutations in circadian clock genes alter circadian 
rhythms, rest-activity cycles and sleep patterns.77-79 
Circadian rhythm abnormalities in the sleep wake-cycle 
(excessive sleep in the depressive phase and reduced 
need for sleep in the manic phase) are confirmed in BD.80 
The sleep-wake cycle is altered by variants in clock genes 
like, PER1,81 PER2,82,83 PER3,84-86 TIM87 and CSK1ε.88 
Circadian rhythmicity of clock genes also regulate energy 
metabolism.89 Mutant mouse models of clock genes such 
as ARNTL, CLOCK, NPAS2, CRY1 and CRY2 also have 
alterations in homeostasis along with sleep 
abnormalities.90-92 

Circadian functions like variation in mood, body 
temperature and secretion of hormones like cortisol, 
norepinephrine, thyroid stimulating hormone and 
melatonin are disrupted in BD subjects.93-96 Melatonin 
regulates sleep and other cyclical bodily functions and its 
synthesis is inhibited by light.97 Melatonin levels were 
significantly lowered in BD patients compared to 
controls.98-100 A phase advance of melatonin levels was 
found in manic patients101 and a delayed peak melatonin 
time was reported in euthymic bipolar patients.100 Bright 
light and melatonin are used to treat circadian rhythm 
disorders102 and melatonin is the only option to treat 
blind people with bipolar disorder.103 

BD with seasonal pattern (mania during spring and 
summer, depression during fall and winter) referred to as 
seasonal affective disorder (SAD) is associated with 
disrupted circadian rhythms.104 Patients with SAD 
generate a biological signal towards change of season 
that is absent in healthy volunteers. The duration of 
nocturnal period of active melatonin secretion is shorter 
in summer than in winter.105 The clock gene variants 
hinder the ability of BD subjects to appropriately adapt 
their circadian rhythms to their environment and subject 
them to sleep disturbances.106 Life stress affects sleep-
wake and social rhythms, leading to circadian clock 
disruption and subsequent mood episodes.107,108 The 
social zeitgeber theory states that stress in life results in 
mood episodes which disrupts the social routines and 
thereby the biological rhythms.109 

Evidences for Association of Circadian Clock Genes in BD 
and SAD 

Convergent Functional Genomics (GFG), an approach that 
identifies a gene based on its position on a chromosome 
and its function is emerging as a tool to identify the 
potential candidate genes associated with BD. CFG 
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approach identified DBP,110 ARNTL,111 GSK3β and RORα/β 
genes112 as potential BD candidate genes. A single 
nucleotide polymorphism (SNP) in CLOCK gene (T3111C; 
rs1801260) is associated with decreased need for sleep in 
bipolar patients.113,114 CLOCK gene variant is associated 
with human diurnal preference.115 NPAS2 gene mutant 
mice78 and CLOCK gene mutant mice display a 
behavioural profile that is similar to human mania.116 
Mice with mutant CLOCK gene have a lengthened 
circadian period.117 Reduced activity is observed in mice 
with ARNTL gene knockout which reverts to normal by 
replacing ARNTL function in muscle.118 DBP gene was 
identified as potential candidate for BD in gene 
expression studies.110 DBP gene knock-out mice display a 
bipolar-like phenotype.112 A decrease in expression of 
ARNTL, DBP and NR1D1 genes is seen in fibroblasts from 
bipolar subjects.119 An increase in ARNTL gene expression 
is observed in post-mortem brains of BD subjects.120 PER2 
gene variation is associated with depression.121 CRY2 
gene variant is associated with winter depression and 
lowered CRY2 gene levels is associated with depression in 
BD.122 TIM gene variants are also associated with 
depression and sleep disturbance.87 

SNP association studies123-145 and GWAS with evidences 
from gene expression and genetic data from human and 
animal model studies146 implicated variants in several 
clock genes in BD (Table 1). SNP association 
studies122,124,147 have implicated variants in clock genes in 
SAD (Table 1). 

Table 1: Studies with evidences for clock gene variants 
significantly associated with BD and SAD 

Gene BD SAD 

ADCYAP1C rs1610037139 - 

ARNTL 

rs1982350125,126,139 
rs969486125,139 
rs1481892; rs7107287; 
rs4757142; rs895682125, 126 
rs2896635; 
rs2290035;rs2279287126 

rs7126303135  
rs2278749126, 127, 139 
rs3789327127, 139  
rs4757141; rs4757138; 
rs3816360; rs11022781146 
rs969485139 
rs747601141 

rs2290035124 

rs2279287149 

ARNTL2 

rs10842905; rs11610949; 
rs10506018; rs2970844; 
rs11048994; rs4964060; 
rs35878285139 

- 

BHLHE40 rs1537720; rs10982664141 - 

BHLHE41 rs4963954139 - 

CLOCK 
rs10462028; rs2070062139 
rs1801260123,133,139  
rs12504300132, 139 

- 

rs3805148; rs3736544; 
rs4864542; rs12648271132 
rs6850524131, 132 
rs4340844131 
rs2412646137 

CRY1 rs2287161139 - 

CRY2 
rs1554338135 
rs10838524138 

rs10838524122 

rs1554338143 

CSK1δ rs4510078132 - 

CSK1ε 
rs1997644135, 139 
rs1534891142 

- 

EGR3 rs1996147135 - 

GSK3 β 
rs17811013; rs17810235; 
rs6438552146 
SNP T-50C128 

- 

NPAS2 

rs7581886; rs4851392; 
rs17662394139 
rs11123857 135,139 
rs13025524; rs17025005135 
rs1562313132 

rs11541353124, 

147 

rs6738097143 

NR1D1 

rs2314339; rs2071427; 
rs2269457132 
rs939347130,134 
rs12941497134 

- 

PER1 rs2585405132 - 

PER2 rs4663868; rs2304672; 
rs2304669132 

rs2304674; 
rs56013859147 

PER3 

rs228642127, 139 
rs2859387125, 126 
rs228666; rs2859388; 
rs228729127 
rs228697 127, 132 
(VNTR) 129, 140, 144 

- 

PPARGC1B rs7732671132 - 

RORA rs4774370139 - 

RORB 

rs10491929; rs17691363; 
rs10217594135 
rs10869435141, 146 
rs1327837146 
rs7022435; rs3750420; 
rs1157358; rs3903529136 

- 

THRA rs939348132 - 

TIM 
rs2291738125, 126 
rs2279665; rs774026; 
rs2291739126 

- 

3-gene 
interaction 
(TMEM165; 
BHLHE40; 
CSK1 ε) 

rs534654; rs6442925; 
rs1534891131 - 

VIP rs17083008; rs688136139 - 

VIPR2 rs885861; rs12670064; 
rs3793227139 - 
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Effects of Treatment of BD on Circadian Clock 

BD treatment studies provide indirect evidences for the 
involvement of clock genes in BD. Mood stabilizers such 
as lithium and valproate and antidepressants used to 
treat BD exert their action through molecules associated 
with the regulation of circadian rhythms.72,148,149 Mood 
stabilisers modulate circadian function.116,150-153 Mice with 
mutant CLOCK gene display a human mania-like 
behavioural profile that reverts to almost normal with 
chronic administration of lithium. Lithium treatment in 
cells results in rapid proteosomal degradation of NR1D1 
gene and activation of clock gene ARNTL.53 Lithium 
inhibits GSK3β154 and regulates circadian rhythms of BD 
patients and model organisms148-156 and shortens period 
in mammalian cells.157,158 Lithium increases the amplitude 
of PER2 and CRY1 genes and reduces the amplitude of 
PER3, CRY2, ARNTL, E4BP4 and NR1D1 genes and alters 
the period of PER2 gene in serum shocked cultured 
murine fibroblasts.159 Lithium regulates the circadian 
system by phosphorylating the clock proteins CRY2,50 
PER252 and NR1D153 and ARNTL57 and delaying the PER2 
gene transcription.160 Lithium salts and valproate reduce 
the suppression of melatonin by light in healthy controls 
as well as in BD patients.100,161,162 Lithium alters clock 
gene expression and delays circadian rhythms in rodents, 
monkeys and humans.163-166 Phosphorylation of clock 
proteins by GSK3β plays a vital role in mood 
stabilization.167 Valproate also regulates circadian 
rhythms by acting on GSK3β.168 Non-pharmacological 
techniques such as bright light therapy and total sleep 
deprivation are used to treat BD by resetting the 
circadian clock. 

BD patients benefit by a strict sleep-wake cycle which 
regulates circadian rhythms.169,170 

CONCLUSION 

BD is a highly heritable psychiatric disorder. There is 
considerable advancement in studies associating 
polymorphisms in circadian clock genes with the 
pathophysiology of BD. Studies relating post-translational 
modifications of clock proteins and BD could be an area 
of focus in future research. 
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