

Effect of Fraction 5 of *Portulaca oleracea* on Plasma Gonadotrophins, Testosterone Levels and their Recoveries in Male Wistar Rats

Oyedeji K.O.^{1*}, Adegoke A.O.², Oshatimi Abayomi³, Adeleke Kolapo⁴

¹Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.
²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.
³Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
⁴Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria.
*Corresponding author's E-mail: sinaoyedeji@yahoo.com

Accepted on: 10-04-2016; Finalized on: 30-04-2016.

ABSTRACT

Portulaca oleracea is a fleshy annual herb which is distributed throughout temperate and tropical areas of world. This study aims at investigating effect of chromatographic fraction 5 of *Portulaca oleracea* on plasma gonadotrophins and testosterone levels and their recoveries in male rats. Twenty male rats were divided into control and fraction 5 (1, 2, 3 mg/kg) treated groups for hormonal assays study. The animals were orally treated on daily basis for 50 days and allowed a recovery (withdrawal) period of 50 days after which hormonal assays were carried out at the end of dosing and recovery periods. Treatment of rats for 50 days with fraction 5 (1 mg/kg, 2 mg/kg) caused significant (p<0.05) reductions in LH levels relative to control. Fraction 5 (3 mg/kg) caused significant (p<0.05) increases in testosterone levels relative to control. There were significant (p<0.05) reductions in FSH levels of fraction 5 (1 mg/kg, 3 mg/kg) recovery groups relative to control. It can be concluded that fraction 5 of *Portulaca oleracea* probably induced significant changes on plasma gonadotrophins and testosterone levels through hypothalamic – pituitary – testicular axis which could result in irreversible sterility.

Keywords: Fraction 5, Testosterone, Luteinizing hormone (LH), Follicle stimulating hormone (FSH), Rats.

INTRODUCTION

ortulaca oleracea belongs to the family of Portulacaceae. It is a warm-climate annual herb and has cosmopolitan distribution. It is commonly called Purslane in English language and "Esan omode" or "Papasan" by the Yoruba tribe of South-West Nigeria¹.

It is used in Iranian folk medicine as a diuretic, vermifuge, antiscorbatic, antitussive, analgesic and gastroesophageal reflux².

Pharmacologically, *Portulaca oleracea* extracts have been reported to decrease morphine dependence in mice³. Its extracts have been reported to have analgesic and antiinflamatory effects⁴. The aqueous and methanol extracts of this plant have contractile effects on isolated intestinal smooth muscle in *in-vitro* preparations⁵. Its extracts have been reported to cause reduction in locomotor activity and an increase in the onset time of pentylenetetrazole (PTZ)–induced convulsion in rats⁶.

Its crude extracts have also been reported to have beneficial effects on the hematological functions and blood chemistry of rats⁷.

Since the crude extracts of this plant have been reported to cause significant reductions in testosterone levels in male rats⁸, this study therefore aims at investigating the effect of chromatographic fraction 5 of *Portulaca oleracea* on plasma gonadotrophins and testosterone levels and their recoveries in male Wistar rats.

MATERIALS AND METHODS

Experimental Animals

Adult male rats weighing between 120 g and 150 g bred in the Pre-Clinical Animal House of the College of Medicine and Health Sciences, Afe Babalola University were used. They were housed under standard laboratory conditions and had free access to feed and water.

They were acclimatized to laboratory conditions for two weeks before the commencement of the experiments. All experiments were carried out in compliance with the recommendations of Helsinki's declaration on guiding principles on care and use of animals.

Plant Material

Fresh specimens of *Portulaca oleracea* were collected from the Botanical Garden of the Forestry Research Institute of Nigeria, Jericho, Ibadan, and was authenticated in the above named institute where a voucher specimen (No FHI 108334) was deposited.

Extraction and Fractionation of Portulaca oleracea

About 3.2 kg of air-dried specimen of *Portulaca oleracea* was cold-extracted in methanol for 72 hours. The mixture was filtered using a wire-gauze and a sieve with tiny pores (0.25 mm) and concentrated at room temperature by exposing the extract for six days. The resulting solution was then placed in the oven at a reduced temperature (45-50 °C).

247

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

The methanol extract was then pre-absorbed with silical gel and placed in the oven at a reduced temperature (45 – 50 °C) overnight and then subjected to open column chromatography on silical gel (F_{254} , 50-200 mesh, E. Merck) for fractionation. The solvents (mobile phases) were hexane (non-polar), ethylacetate (partially polar)

and methanol (polar). The gradients of the mobile phases involved hexane with an increasing percentage of ethylacetate (hexane/ethylacetate mixture) and then ethylacetate with an increasing percentage of methanol (ethylacetate/methanol mixture) as shown below:

Havana		Ethylasstate		Mathemal
Hexane		Ethylacetate		Methanol
100% (50 ml)	:	0% (0 ml)		
90% (45 ml)	:	10% (5 ml)		
80% (40 ml)	:	20% (10 ml)		
70% (35 ml)	:	30% (15 ml)		
60% (30 ml)	:	40% (20 ml)		
50% (25 ml)	:	50% (25 ml)		
40% (20 ml)	:	60% (30 ml)		
30% (15 ml)	:	70% (35 ml)		
20% (10 ml)	:	80% (40 ml)		
10% (5 ml)	:	90% (45 ml)		
0% (0 ml)	:	100% (50 ml)	:	0% (0 ml)
		90% (45 ml)	:	10% (5 ml)
		80% (40 ml)	:	20% (10 ml)
		70% (35 ml)	:	30% (15 ml)
		60% (30 ml)	:	40% (20 ml)
		50% (25 ml)	:	50% (25 ml)
		40% (20 ml)	:	60% (30 ml)
		30% (15 ml)	:	70% (35 ml)
		20% (10 ml)	:	80% (40 ml)
		10% (5 ml)	:	90% (45 ml)
		0% (0 ml)	:	100% (50 ml)

Twenty-one fractions were obtained after the column chromatographic procedure.

Thin Layer Chromatography (TLC)

The 21 fractions were spotted on pre-coated plates of silica gel GF_{254} (20 x 20, 0.5 mm thick; E. Merck) using capillary tubes. The spotted TLC plates were developed in a tank that contained a mixture of ethylacetate/methanol (9:1) as the mobile phases.

The TLC plates were then examined under the ultraviolet (UV) light at a wavelength of 365 nm and the well-defined spots of the components were then revealed by the UV light. Fractions with similar relative fronts or retention or retardation factors (R_f value) were then pooled or bulked together, this then reduced the number of fractions to five (fractions 1, 2, 3, 4, 5).

 $R_{f} = \frac{distance\ compound\ has\ moved\ from\ origin}{distance\ of\ solvent\ from\ trom\ origin}$

Fraction 5 was then subjected to bioassay, *vis-à-vis*, its effect on hormonal profiles in male rats were evaluated.

Acute Toxicity Test of Chromatographic Fraction

The acute toxicity test of chromatographic fraction 5 of *Portulaca oleracea* was evaluated in mice as described by⁹. Fifteen adult male mice weighing between 20–22 g were divided into five mice per group.

Three doses of the fraction: 1 mg/kg, 5 mg/kg and 10 mg/kg were given orally to the animals. The control group mice (n=5) received 0.5 ml of distilled water. The animals were observed for seven days for behavioral changes and mortality.

Experimental Design

Twenty animals were randomly divided into four groups with each group consisting of five rats. The four groups were subjected to the following oral daily treatments for 50 days and allowed a recovery (withdrawal) period of 50 days:

Group I rats received 1 mg/kg of fraction 5

Group II rats received 2 mg/kg of fraction 5

Group III rats receive 3 mg/kg of fraction 5

Group IV rats received 0.5 ml of distilled water as the control group.

Collection of Blood Samples

Twenty four hours (day 51) after the last dosing of the four groups and also twenty four hours after the last day of the 50 days recovery period(day 101), blood samples were collected from all the animals through the medial cantus into EDTA bottles for the determination of plasma

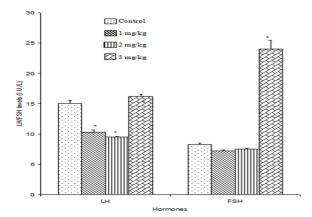
International Journal of Pharmaceutical Sciences Review and Research

Available online at www.globalresearchonline.net

gonadotrophins and testosterone levels using ELISA technique with Fortress Kit.

Statistical Analysis

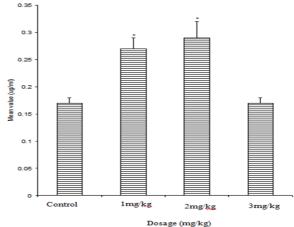
The mean and standard error of mean (S.E.M.) were calculated for all values. Comparisons between the control and the treated groups were done using one-way analysis of variance (ANOVA) with Duncan's Multiple Range Test. Differences were considered statistically significant at p<0.05.

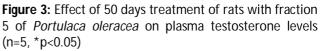

RESULTS

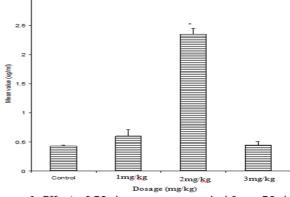
No mortality or changes in behavior were observed in all the treated and control groups of mice.

Treatment of rats for 50 days with fraction 5 (1 mg/kg, 2 mg/kg) caused significant (p<0.05) decrease in LH levels relative to the control, while fraction 5 (3 mg/kg) caused insignificant (p>0.05) change in LH level relative to the control. Treatment of rats for 50 days with fraction 5 (1 mg/kg, 2 mg/kg) caused insignificant (p>0.05) changes in FSH levels relative to the control, while fraction 5 (3 mg/kg) caused significant (p<0.05) increase in FSH level relative to the control (Figure 1). Treatment of rats with fraction 5 (1 mg/kg, 2 mg/kg) caused significant (p<0.05) increase in testosterone levels relative to the control, while fraction 5 (3 mg/kg) caused insignificant (p>0.05) increase in testosterone levels relative to the control, while fraction 5 (3 mg/kg) caused insignificant (p>0.05) change in testosterone level relative to the control, Figure 2).

There were insignificant (p>0.05) changes in LH levels of fraction 5 (1 mg/kg, 2 mg/kg, 3 mg/kg) recovery groups relative to the control. There were significant (p<0.05) decreases in FSH levels of fraction 5 (1 mg/kg, 3 mg/kg) recovery groups relative to the control. There was insignificant (p>0.05) change in FSH level of fraction 5 (2 mg/kg) recovery group relative to the control (Figure 3).


There were insignificant (p>0.05) changes in testosterone levels of fraction 5 (1 mg/kg, 3 mg/mg) recovery groups relative to the control, but there was a significant (p<0.05) increase in testosterone level of fraction 5 (2 mg/kg) recovery group relative to the control (Figure 4).




Figure 1: Effect of 50 days treatment of rats with fraction 5 of *Portulaca oleracea* on plasma LH and FSH levels (n=5, *p<0.05)

Control Con

Figure 2: Effect of 50 days recovery period from 50 days pre-treatment of rats with fraction 5 of *Portulaca oleracea* on plasma LH and FSH levels (n=5, *p<0.05)

Figure 4: Effect of 50 days recovery period from 50 days pre-treatment of rats with fraction 5 of *Portulaca oleracea* on plasma testosterone levels (n=5, *p<0.05)

DISCUSSION

It was observed that the highest dose of fraction 5 caused no mortality or behavioral changes in all the treated animals, which probably indicates that the fraction has a wide safety margin.

The fraction induced significant reductions in LH levels which could be due to the indirect action of this fraction on the anterior pituitary gland thereby causing the inhibition of LH release by the adenohypophysis. Similar result was reported by¹⁰ in Caricapryl – 99 extract treatment rats. However, there were insignificant changes in LH levels after the recovery period of treatment with the fraction which could be due to the stimulation or activation of the hypothalamic – pituitary – testicular axis negative feedback mechanism.

The fraction induced significant increase in FSH level which could be due to the indirect action of this fraction on the anterior pituitary, thereby causing stimulation of FSH release by the adenohypophysis. Similar result was reported by¹¹ in *Ruta chalepensis* extract treated rats. However, there were significant reductions in FSH levels after withdrawal (recovery) of treatment with the fraction which could be due to the negative feedback effect on the anterior pituitary by the hormone called inhibin which is secreted by the Sertoli cells. This hormone (inhibin) has a strong direct effect on the anterior pituitary gland to inhibit the secretion of FSH and possibly a slight effect on the hypothalamus to inhibit the secretion of GnRH¹².

The fraction caused significant increase in testosterone level which was not expected due to the fact that this fraction induced significant decrease in LH levels, as such it was expected that the fraction would cause some significant decrease in testosterone level, since it is generally believed that Leydig cells normally secrete testosterone by the stimulatory effect of LH. The plausible explanation for this observation could be as a result of direct damage to the testes by this fraction, which impaired gonadal response to the gonadotrophin (LH), since it has been reported that any direct damage to the testis is likely to impair gonadal response to FSH and LH¹³. However, there was still significant increase in testosterone level after withdrawal of treatment (recovery) with the fraction which probably indicates that the damage done to the testes by this fraction is irreversible.

CONCLUSION

It can therefore be concluded that chromatographic fraction 5 of *Portulaca oleracea* probably induced significant changes on plasma gonadotrophins and testosterone levels through the hypothalamic–pituitary–testicular axis which could result in irreversible sterility.

REFERENCES

- 1. Burkill HM, The useful plants of west Tropical Africa, Volume 4, The Whitefriars Press Limited, Tonbridge, Kent TN9 IQR, Great Britain, 1997.
- 2. Zargari A, Medicinal Plants Tehran, University Press, 1987, 218-220.
- Gholamreza K, Toktam Z, Azam N, Effect of *Portulaca* oleracea extracts on the morphine dependence in mice. Iranian Journal of Basic Medical Sciences, 10 (4), 2008, 229-322.
- 4. Chan K, Islam MW, Kamil M, The analgesic and antiinflammatory effects of *Portulaca oleracea*, Journal of Ethnopharmacology, 73, 2000, 445-451.
- 5. Oyedeji KO, Oluwole FS, Ademola S, Effects of aqueous and methanolic extracts of *Portulaca oleracea* on intestinal smooth muscle, Science Focus, 12, 2007, 13-18.
- 6. Radhakrishnan R, Zakaria MNM, Islam MW, Neuropharmacological actions of *Portulaca oleracea*, Journal of Ethnopharmacology, 76, 2001, 171-176.
- 7. Oyedeji KO, Bolarinwa AF, Effects of crude extracts of *Portulaca oleracea* on hematological and biochemical parameters in albino rats African Journal of Biomedical Research, 15, 2012, 41-47.
- 8. Oyedeji KO, Bolarinwa AF, Free serum testosterone levels in male albino rats treated with crude extracts of *Portulaca oleracea*, African Journal of Biomedical Research, 16, 2013, 59-62.
- Miller LC, Tainter ML, Estimation of the LD₅₀ and its error by means of logarithmic probit graph paper, Journal of Pharmacology, 24, 1994, 839-840.
- Udoh PB, Udoh FV, Umoren EB, James UW Okeke CP, Agwu B, Effect of Caricapryl-99 seed alkaloid extract on the serum levels of sex hormones and pituitary gonadotrophins in male albino rats, Nigerian Journal of Physiological Sciences, 24(1), 2009, 13-15.
- 11. Al Qarawi AA, Stimulatrory effect of the aqueous extract of *Ruta chalepensis* on the sex organs and hormones of male rats, The Journal of Applied Research, 5, 2005, 1.
- 12. Guyton AC, Hall JE, Textbook of Medical Physiology, 11th edition, Elsevier Inc., 2006.
- 13. Braide VB, Agube CA, Essien GE, Udoh FV, Effect of Garcinia Kola seed alkaloid extract on levels of gonadal hormone and pituitary gonadotrophins in rat serum, Nigerian Journal of Physiological Science, 18, 2003, 59-64.

Source of Support: Nil, Conflict of Interest: None.

International Journal of Pharmaceutical Sciences Review and Research

Available online at www.globalresearchonline.net