Quantitative Analysis of Desvenlafaxine HCl by Ion Selective Electrode

Aman S. Alturiqi*
Department of Chemistry, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia.
*Corresponding author’s E-mail: asmt1386@yahoo.com

Accepted on: 20-07-2016; Finalized on: 30-09-2016.

ABSTRACT
The construction and electrochemical response characteristics of a poly vinyl chloride (PVC) membrane selective electrode for the determination of desvenlafaxine HCl (DVN) are described. The electrode incorporates PVC membrane with desvenlafaxine-silicomolybdate (DVN-SMA) ion pair complex with diocylphthalate (DOP) as a plasticizer. The influence of the electrode composition, conditioning time of the electrode and pH of the test solution, on the electrode performance were investigated. The drug electrode showed Nernstian response in the concentration range from 1.0 × 10⁻⁵ M to 1.0 × 10⁻² M with slope of 58.0 mV decade⁻¹, and was found to be very precise and usable within the pH range 4 ~ 8.5. The electrode showed good selectivity towards DVN with respect to some inorganic and organic compounds. The electrode was successfully used for potentiometric determination of DVN both in pure solutions, urine and in pharmaceutical preparations.

Keywords: Desvenlafaxine hydrochloride (DVN), Ion-selective electrode, Potentiometry.

INTRODUCTION
An ion-selective electrode (ISE) is defined as an electrode that is capable of measuring selectivity and activity of a given ion regardless of other ions present in the solution. It was used for determination of many drugs.1-3

Compared with other analytical techniques, ISE has an impressive list of advantages such as being portable, suitable for either direct determination or using as a sensor in titrations besides, these membrane electrode don’t affect the studied solutions.

In this part, the construction of plasticised PVC desvenlafaxine-ion selective electrode and its application in pharmaceutical analysis and in urine are described. Desvenlafaxine HCl (DVN), 1-2-(dimethylamino)-1-(4-methoxyphenyl) ethyl-cyclohexanol hydrochloride (Figure 1) is a new phenethylamine bicyclic antidepressant, which has a neuropharmacologic profile distinct from that of existing antidepressants including tricyclic compounds.

It imparts antidepressant effects by inhibiting the neuronal uptake of norepinephrine, serotonin and dopamine and lacks the adverse side effect profile of tricyclic antidepressants DVN is well absorbed in humans and undergoes extensive metabolism in the liver and has several metabolites, one of which is biologically active. DVN is extensively metabolized to O-desmethyl venlafaxine (ODV), a major metabolite with an activity profile similar to that of DVN. It is therefore important to monitor plasma concentration of DVN to establish pharmacokinetic parameters.

Several analytical procedures have been described for the determination of VEN in both pure and pharmaceutical samples including liquid chromatography–mass spectrometry LC–Ms/Ms4, UV spectroscopy5, spectrophotometric6, LC–UV and LC–MS evaluation7, reverse phase high performance liquid chromatography HPLC-RP Method8 and capillary electrophoresis.9-18 Most of these methods use sophisticated instruments, time consuming or needs expensive reagents. Ion-selective electrodes have been increasingly used for quantitative measurement of drugs. Potentiometric methods based on this technique are simple, rapid, low cost, low detection limit, good accuracy, wide concentration range, applicability to coloured and turbid solutions and offer enough selectivity towards the drugs in the presence of various pharmaceutical excipients.19,20

Figure 1: Chemical Structure of Desvenlafaxine Hydrochloride

MATERIALS AND METHODS

Reagents
All reagents were of analytical grade. Double distilled and deionized water was used throughout all experiments. Desvenlafaxine hydrochloride was provide by Sigma Co. (Pristiq® tablet) was obtained from local drug stores. Membrane components silicomolybdic acid (SMA) H₃SiO₄.12MoO₃, H₂O and diocylphthalate (DOP) C₂₀H₄₀O₄ were obtained from Sigma-Aldrich. High molecular weight poly vinyl chloride (PVC), used as the electrode
membrane material, freshly distilled tetrahydrofuran (THF), used as a solvent for the membrane components, were obtained from Fluka. Stock DVN solution (10⁻² M) was prepared daily by dissolving an appropriate amount of the drug in double distilled water. More dilute solutions were prepared by appropriate dilution. All DVN solutions were kept in dark brown bottles. To investigate the selectivity of the proposed electrode towards inorganic cations, amino acids and sugars, 1.0 × 10⁻³ M solution of each of the following ions were prepared: Na⁺, NH₄⁺, Cu²⁺, Co²⁺ and Cr³⁺. Also 1.0 × 10⁻³ M solution of glucose, histidine and cysteine were prepared.

Sensor Potential Measurement

Potentiometric measurements were carried out with an Orion (Cambridge, MA, USA) Model 701 A digital pH/mV-meter. A Techne circulator thermostat, Model C-100, was used to control the temperature of the test solution. The electrochemical system was as follows:

\[\text{Ag/AgCl/internal solution/PVC membrane/test solution/ SCE (sat. KCl)} \]

Preparation of DVN - SMA ion-pair Complex

DVN solution 1.0 × 10⁻² M was mixed with an equal volume 1.0×10⁻² M silico molybdic acid (SMA) solution with continuous stirring. The resulting precipitate was left in contact with their mother liquor over night to assure complete coagulation, was filtered, washed thoroughly with distilled water until chloride free (tested using AgNO₃ solution) and dried at room temperature for 2 days. Elemental analyses were carried out to study the formation DVN-SMA ion-pair complex. The agreement between calculated and found values was very good confirming the postulated stoichiometry; the 4:1 (DVN - SMA) molar ratio stoichiometry.

Preparation of PVC Membrane Electrode with an Internal Reference Solution

The general procedure to prepare the PVC membrane was as follow: different amounts of the ion-pair along with appropriate amounts of PVC, plasticizer and additive were dissolved in tetrahydrofuran (THF), Table 1, and the solution was mixed well. The resulting mixture was transferred into a glass dish of 5 cm diameter. The solvent was evaporated slowly until an oily concentrated mixture was obtained (about 2 days).

The thickness of the membrane was about 0.2 mm. In each case, prepared membrane and glued using PVC-THF paste to the end of a glass tube (17 mm in diameter). The electrode body was then filled with a mixture containing equal volumes of 1.0 × 10⁻³ M DVN and 1.0×10⁻³ M NaCl (as internal reference solution) in which the Ag/AgCl reference electrode was dipped. The electrode was finally conditioned for 3h by soaking in a 1.0 × 10⁻³ M VEN solution. When not in use the sensor was kept stored in a refrigerator showed a good preservation of the slope values and response properties extending to several months.

General Procedure (Calibration of the Electrode)

Standard DVN solutions of 1.0 × 10⁻⁶ M – 2.0 × 10⁻² M were prepared. The VEN-selective and reference electrodes were immersed and the potential of each sample solution was directly measured. The potential was recorded after stabilizing to ± 1 mV. The electrode was washed with double distilled water and dried between measurements. The electrode potential was plotted versus negative logarithmic concentration of DVN (\(P_{DVN} \)). Slopes of the resulting calibration curves were calculated.

Selectivity of the Electrode

Selectivity coefficients were determined by the separate solution method²¹, in which the following equation was applied.

\[
\log R_{DVN,B}^{pot} = \left(E_1 - E_2 \right) S + \log [DVN] - \log [B^{n+}] S \quad \text{eq. (1)}
\]

where \(E_1 \) is the electrode potential in 1×10⁻³ M DVN and solution. \(E_2 \) is the potential of the electrode in 1.0 × 10⁻³ M solution cation, \(B^{n+} \) and \(S \) is the slope of the calibration plot. The selectivity of the electrode towards sugars, amino acids, and certain cations was studied.

Standard Addition Method

Small increments of a standard DVN solution 1.0 × 10⁻² M were added to 50 ml aliquot samples of various drug concentrations. The change in potential reading at a constant temperature of 25±1°C was recorded for each increment and used to calculate the concentration of the drug sample solution using the following equation:

\[
C_s = C_x \left(\frac{V_s}{V_s + V_i} \right)^{10^{\left(\frac{\Delta E}{5}\right)}} - \left(\frac{V_i}{V_s + V_i} \right)^{-1} \quad \text{eq. (2)}
\]

where \(C_x \) and \(V_x \) are the concentration and volume of the unknown, respectively, \(C_s \) and \(V_s \) are the concentration and volume of the standard, respectively, \(S \) is the slope of the calibration graph, and \(\Delta E \) is the change in potential due to the addition of the standards.

Potentiometric Titration of VEN

An aliquot of DVN (1.0 × 10⁻³ M - 1.0 × 10⁻⁵ M) was transferred into a 100 mL beaker, then titrated against a 1.0 × 10⁻³ M SMA using the investigated electrodes as indicator electrodes.

The same method was applied for the determination of DVN in the pharmaceutical preparations and urine.

Determination of DVN in Pharmaceutical Preparations

A homogenized powder was prepared from ten accurately weighed DVN tablets.

An appropriate amount of this powder was dissolved in about 30 mL distilled water and filtered in a 50 mL measuring flask. The residue was washed three times with double distilled water, and the pH of the solution was adjusted to 5 by 0.1 M acetate buffer, and diluted to
the mark with water. The contents of the measuring flask were transferred into a 100 mL beaker and subjected to potentiometric determination of DVN.

Application to Spiked Urine Samples

Urine samples containing different DVN concentrations (1.0 x 10^{-7} M to 1.0 x 10^{-3} M) were prepared by adding known amounts of DVN to 25 mL aliquots of blank urine sample, the DVN selective and reference electrodes were immersed and the DVN concentration was determined by direct potentiometry using the standard additions technique.

RESULTS AND DISCUSSION

Influence of Membrane Composition

Five membranes of the different compositions (Table 1) prepared as described in the Experimental were tested. The results show that on using membranes of optimum compositions (assigned by b in the table), slope of 58.0 mV/concentration decade over a relatively wide range of DVN concentration (1.0 x 10^{-5} M - 1.0 x 10^{-2} M). A typical calibration plot for electrode is shown in Figure 2. The limit of detection, as determined from the intersection of the two extrapolated segments of the calibration graph, was 3.4 x 10^{-6} M.

Table 1: Composition of different DVN - SMA membranes and slopes of the corresponding calibration graphs at 25±0.1 °C.

<table>
<thead>
<tr>
<th>Composition % (w/w)</th>
<th>Slope (mV/decade)</th>
<th>Correlation Coefficient</th>
<th>RSD(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Pair</td>
<td>DOP</td>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>48.0</td>
<td>48.0</td>
<td>56.7</td>
</tr>
<tr>
<td>5.0</td>
<td>47.5</td>
<td>47.5</td>
<td>53.5</td>
</tr>
<tr>
<td>7.0</td>
<td>46.5</td>
<td>46.5</td>
<td>51.8</td>
</tr>
<tr>
<td>10.0(^b)</td>
<td>45.0</td>
<td>45.0</td>
<td>58.0</td>
</tr>
<tr>
<td>13.0</td>
<td>43.5</td>
<td>43.5</td>
<td>49.0</td>
</tr>
</tbody>
</table>

\(^a\)Relative standard deviation (three determinations)

\(^b\)Optimum composition

Table 2: Selectivity Coefficients of the DVN - Selective Electrode Calculated by the Separate Solution Method at 25 °C.

<table>
<thead>
<tr>
<th>Interferent</th>
<th>(K_{DVN, B}^{pot})</th>
<th>Interferent</th>
<th>(K_{DVN, B}^{pot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td>2.8 x 10^{-4}</td>
<td>Cr(^3+)</td>
<td>1.1 x 10^{-4}</td>
</tr>
<tr>
<td>NH(_4)(^+)</td>
<td>4.5 x 10^{-3}</td>
<td>Glucose</td>
<td>2.2 x 10^{-3}</td>
</tr>
<tr>
<td>Cu(^2+)</td>
<td>3.1 x 10^{-5}</td>
<td>Histidine</td>
<td>1.8 x 10^{-2}</td>
</tr>
<tr>
<td>Co(^2+)</td>
<td>3.3 x 10^{-4}</td>
<td>Cysteine</td>
<td>3.6 x 10^{-4}</td>
</tr>
</tbody>
</table>

Figure 2: Typical calibration graph of DVN - SMA-PVC membrane electrode.

Figure 3: Effect of pH on the optimal response of DVN-SMA-PVC membrane electrode.
Table 3: Determination of DVN in Pure Form and in Pharmaceutical Preparations.

<table>
<thead>
<tr>
<th></th>
<th>Pure Solution</th>
<th>Pristiq Tablets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Addition</td>
<td>Potentiometric Titration</td>
</tr>
<tr>
<td>Taken (M)</td>
<td>1.5×10⁻⁵</td>
<td>1.0×10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>1.0×10⁻⁴</td>
<td>1.0×10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>1.5×10⁻³</td>
<td>1.0×10⁻³</td>
</tr>
<tr>
<td>Recovery (%)</td>
<td>98.88</td>
<td>103.13</td>
</tr>
<tr>
<td>Recovery (%)</td>
<td>100.93</td>
<td>105.21</td>
</tr>
<tr>
<td>Recovery (%)</td>
<td>103.44</td>
<td>99.08</td>
</tr>
<tr>
<td>R.S.D. (%)</td>
<td>0.72</td>
<td>0.26</td>
</tr>
<tr>
<td>R.S.D. (%)</td>
<td>0.20</td>
<td>0.32</td>
</tr>
<tr>
<td>R.S.D. (%)</td>
<td>0.12</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*RSD (three determination)

Table 4: Application of Proposed Electrode for the Determination of DVN in Urine.

<table>
<thead>
<tr>
<th>Taken (M)</th>
<th>Recovery %</th>
<th>RSD*</th>
<th>Recovery %</th>
<th>RSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human urine</td>
<td>1×10⁻⁵</td>
<td>98.5</td>
<td>0.63</td>
<td>100.2</td>
</tr>
<tr>
<td>Human urine</td>
<td>1×10⁻⁴</td>
<td>99.8</td>
<td>0.45</td>
<td>100.3</td>
</tr>
<tr>
<td>Human urine</td>
<td>1×10⁻³</td>
<td>97.9</td>
<td>0.88</td>
<td>99.8</td>
</tr>
</tbody>
</table>

*RSD (three determinations)

Response Time

The dynamic response time is an important factor with selective electrodes.

For the proposed ISE, the response time were obtained from the dynamic potential response corresponding to DVN concentration steps between 1×10⁻⁵ – 1×10⁻² M.

This electrode exhibits a fast dynamic response of about 20 s. In spite of at the lower concentration below 1×10⁻³ M, the response time is expectedly sluggish about (25 – 30 s).

The electrode was used for a period of 35 days without significant change in the electrode parameters.

Effect of pH

The influence pH on the response of PVC was checked by recording the potential reading of the cell for solutions containing 10⁻⁴ M DVN at different pH values.

Variation of pH value was done by adding very small volumes of HCl and/or NaOH solution (0.1 – 1.0 M of each) to the drug solution.

The potential-pH curve for DVN concentrations were constructed as shown in Figure 3. As is obvious, within the pH range 4 – 8.5 the electrode potential is practically independent of pH, and in this range, the electrode can be safely used for DVN determination.

Selectivity of the Electrode

The selectivity coefficients K_{DVN, j^+}^{Pot} presented in Table 2 clearly showed that the proposed PVC membrane electrode is highly selective toward VEN with respect to many common inorganic cations, sugars, and amino acids which are frequently present in biological fluids and pharmaceutical preparations. The inorganic cations did not interfere due to the differences in their ionic size, mobility and permeability. Also, the smaller the energy of hydration of the cation facilitated a greater response of the membrane. In the case of sugar and amino acid, the high selectivity is mainly attributed to the difference in polarity and lipophilic nature of their molecules relative to trazodone hydrochloride.22,23

Reproducibility

Reproducibility was tested by repeating each measurement at least three times.

However, for an electrode immersed in standard solutions with the same concentration from different batches or for several electrodes with the same composition immersed in the same standard solution, insignificant differences in potential readings were obtained. This indicated fairly good reproducibility.

Analytical Applications

The aforementioned results proved that the proposed electrode can be used for analysis of drug in different real samples. The desvenlafaxine selective electrode was satisfactorily applied to the potentiometric determination of desvenlafaxine in pure solution, pharmaceutical preparations and in the urine by the standard additions method and potentiometric titration.
The results are shown in Tables 3, 4 and 5. These results revealed that the desvenlafaxine can be accurately determined using the proposed electrode. The results of the pure solutions and the pharmaceutical preparations were compared with the reference method. The results are in good agreement with those obtained from the reference method.

CONCLUSION

The proposed electrode is sufficiently simple and selective for the determination of DVN in pure form, pharmaceutical preparations and in urine. The use of the proposed electrode offers the advantage of fast response, elimination of drug pre-treatment or separation steps and accuracy over wide concentration range. They can therefore be used for the routine analysis of the drug in quality control laboratories.

REFERENCES

Source of Support: Nil, Conflict of Interest: None.