UV Spectrophotometric Stability Indicating Method Development and Validation for the Determination of Tenoxicam Bulk and Dosage Form

Warad T. A., Todkar V. B., Gholve S. B.*, Bhusnure O. G., Thonte S.S., Thakare V. M.
Channabasweshwar Pharmacy College (Degree), Kava Road, Basweshwar Chowk, Latur, Maharashtra, India.
*Corresponding author’s E-mail: sbgholve@gmail.com

Received: 10-04-2017; Revised: 23-05-2017; Accepted: 12-07-2017.

ABSTRACT

A simple, specific and economic UV spectrophotometric method has been developed using as diluents 0.1N NaOH to determine the tenoxicam content in bulk and pharmaceutical dosage formulations. The quantitative determination of the drug has been carried out at a predetermined \(\lambda_{\text{max}} \) of 370nm, it was proved linear in the range 2-12 \(\mu g/mL \) and exhibited good correlation coefficient \((R^2=0.999) \) and excellent mean recovery (98-99%). LOQ and LOD was found to be 0.881, 2.67 respectively. The method was validated statically and by recovery studies for linearity, precision, repeatability and reproducibility as per ICH guideline. The obtained results proved that the method can be employed for the routine analysis of tenoxicam in bulk as well as in the commercial formulations.

Keywords: Tenoxicam, UV Spectroscopy, Method Validation.

INTRODUCTION

Analytical method development

Analytical methods are intended to establish the identity, purity, physical characteristics and potency of the drugs and to support drug testing against specifications during manufacturing and quality release operations as well as during long term stability studies.

Method validation

Validation of an analytical method is the process by which it is established, by laboratory Studies, that the performance characteristics of the method meet the requirements for the Intended analytical applications.

Tenoxicam chemically 4-hydroxy-2-methyl-n-(pyridinyl-2-yl)-2h-thieno[2, 3-e]-1, 2thiazine-3-carboxamide 1, 1-dioxide, is a Non-steroidal anti-inflammatory drug. It is used to relieve inflammation, swelling, stiffness, and pain associated with rheumatoid arthritis, osteoarthritis, ankylosing spondylitis. It is official in BP.

![Figure 1: Structure of Tenoxicam](image)

Literature survey reveals that LC-MS study has been reported for the quantification of tenoxicam in human plasma and HPLC method development for the determination of tenoxicam. No UV spectrophotometric method has been reported for the estimation of tenoxicam. In this study, efforts were made to develop a simple, easy and economic UV spectrophotometric method using a diluents 0.1N NaOH for the determination of tenoxicam in raw material as well as in the marketed dosage formulations. The developed method was optimized and validated as per the guidelines of International Council on Hormonisation (ICH) and demonstrated excellent specificity, linearity, precision and accuracy for tenoxicam.

MATERIALS AND METHODS

Instruments

A Shimadzu UV–visible spectrophotometer (UV1800, Shimadzu Corporation, Kyoto, Japan) was used for all absorbance measurements with matched quartz cells.

Materials

All chemicals and reagents were of analytical grade. Tenoxicam in the form of powder with certificate of analysis was provided by Ramdev Chemicals Pvt Ltd, Mumbai. Pharmaceutical grade excipients were obtained from Pharmaceutical Technology Lab. of Maharashtra.

Determination of wavelength of maximum absorption

A standard stock solution of Tenoxicam (100 \(\mu g/mL \)) was prepared using diluents to further obtain 10 \(\mu g/mL \). An UV spectroscopic scanning (200-400 nm) was carried out with final diluted solution to determine \(\lambda_{\text{max}} \) for the detection of Tenoxicam using diluents as a blank.

Linearity and Range

For linearity study, six solutions at different concentrations (2, 4, 6, 8, 10 and 12 \(\mu g/mL \)) were prepared using six different aliquots of stock solution, and absorbance measurements with matched quartz cells.
plot. Limit of detection (LOD) and limit of quantification (LOQ) for the assay were also calculated.

Intra-day precision (repeatability) and inter-day precision study (intermediate precision)

Tenoxicam 100 µg/mL was prepared following the same dilution pattern of stock solution. Three different aliquots of stock solution were then diluted to 10 mL to obtain the concentrations of 4, 8 and 12 µg/mL. This procedure was repeated in the different days.

Stability study

Samples prepared for repeatability study were preserved for 24 h at room temperature and analyzed on the following day to test for short-term stability.

Accuracy/recovery study

This study was carried out using tablet of tenoxicam. Calculation was done from the label claim and the average weight of the final product. Previously used dilution pattern was followed for the tablet to obtain three concentrations—80%, 100% and 120% of reference solution.

Specificity in the presence of excipients

The test for the specificity was carried out using only excipients. Spectra for placebo tablet, blank, and sample were compared. Secondly the specificity was determined by subjecting the sample solution to accelerated degradation by heat (60 °C) for 48 h in order to verify that none of the degradation products interfered with the quantification of the drug.

Assay of content of Tenoxicam in selected marketed brands

Market brands of tenoxicam tablet from different manufacturers were randomly selected and analyzed using the newly developed and validated method. Sample solutions of brand (10 mg/mL) were also prepared and assayed for content of tenoxicam against the standard. The content of tenoxicam in the marketed brands was determined using standard calculations.

Stress degradation studies

1) Photolytic Degradation

Specific amount of drug tenoxicam was weighed accurately & putted into the UV chamber for three days. After three days 10mg drug was weighed and made stock solution (100 µg/mL) with diluents. Then an appropriate concentration (10 µg/mL) was prepared & absorbance was measured in UV spectrophotometer.

2) Thermal Degradation

Drug was taken in a Petri dish which was previously cleaned & dried then was put into the oven for 48 hrs then it was taken out & weighed 10mg drug was weighed and made stock solution (100 µg/mL) with diluents. Then an appropriate concentration (10 µg/mL) was prepared & absorbance was measured in UV spectrophotometer.

3) Acid Degradation

0.01N HCl was taken in a 10 ml volumetric flask then accurately weighed 10mg drug tenoxicam was dissolved in it. Then the solution was refluxed for 4 hrs then from this solution an appropriate concentration (10 µg/mL) was prepared using diluents & absorbance was measured in UV spectrophotometer.

4) Alkali Degradation

0.01N NaOH was taken in a 10 ml volumetric flask then accurately weighed 10mg drug tenoxicam was dissolved in it. Then the solution was refluxed for 4 hrs then from this solution an appropriate concentration (10 µg/mL) was prepared using diluents & absorbance was measured in UV spectrophotometer.

5) Oxidation with H2O2

3% H2O2 solution was taken in a 10 ml volumetric flask then accurately weighed 10mg drug tenoxicam was dissolved in it. Then the solution was kept in dark for 4 hrs then from this solution an appropriate concentration (10 µg/mL) was prepared using diluents & absorbance was measured in UV spectrophotometer.

RESULTS AND DISCUSSION

Method development and optimization

An accurately weighed quantity of tenoxicam (10 mg) transferred into a 100 ml volumetric flasks, dissolved well and diluted to the mark with0.1N NaOH to obtain standard solution having concentration of (100 µg/mL). A 1 ml of solution transferred into a 10 ml volumetric flasks and diluted to the mark with 0.1N NaOH to obtain the solutions having the concentrations of 10µg/mL for tenoxicam. The pre-determined wavelength of maximum absorption (Amax) was 370 nm. (Fig. 1)
Method validation

Linearity and range

The calibration curve obtained was evaluated by its correlation coefficient. The absorbance of the samples in the range of 2.0–12.0 mg/mL was linear with a correlation coefficient (R^2) greater than 0.999 (Table 1). The LOD and LOQ were calculated as 0.881 mg/mL and 2.67 mg/mL respectively.

Table 1: Linearity data

<table>
<thead>
<tr>
<th>Concentration μg/ml</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>4</td>
<td>0.284</td>
</tr>
<tr>
<td>6</td>
<td>0.420</td>
</tr>
<tr>
<td>8</td>
<td>0.563</td>
</tr>
<tr>
<td>10</td>
<td>0.695</td>
</tr>
<tr>
<td>12</td>
<td>0.841</td>
</tr>
</tbody>
</table>

Intra-day and inter-day precision

The intra-day and inter-day precision study (Table 2) of the developed method confirmed adequate sample stability and method reliability where all the RSDs were less than 2%.

Table 2: Intra-day and inter-day precision determined for three different concentrations of Tenoxicam (n=3).

<table>
<thead>
<tr>
<th>Conc.µg/mL</th>
<th>Intra-day precision</th>
<th>Inter-day precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absorbance measured</td>
<td>RSD (%)</td>
</tr>
<tr>
<td>4</td>
<td>0.281</td>
<td>0.523</td>
</tr>
<tr>
<td>8</td>
<td>0.563</td>
<td>0.244</td>
</tr>
<tr>
<td>12</td>
<td>0.841</td>
<td>0.116</td>
</tr>
</tbody>
</table>

Stability

Stability study’s results were within the acceptance range (Table 3) and indicated the samples stability over 24 h (short-term).

Table 3: Short term stability determined by the proposed method (n=3).

<table>
<thead>
<tr>
<th>Conc declared µg/mL</th>
<th>Concentration found µg/mL</th>
<th>RSD (%)</th>
<th>Average potency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.279</td>
<td>0.146</td>
<td>99.21</td>
</tr>
<tr>
<td>8</td>
<td>0.560</td>
<td>0.145</td>
<td>98.68</td>
</tr>
<tr>
<td>12</td>
<td>0.836</td>
<td>0.100</td>
<td>98.98</td>
</tr>
</tbody>
</table>

Accuracy/Recovery

Results within the range of 98.00–100.97% ensure an accurate method (Table 4) as well as indicate non-interference with the excipients of formulation.

Table 4: Accuracy/Recovery for three different concentrations of tenoxicam by the proposed method.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Label claim (mg/tab)</th>
<th>Amount added (%)</th>
<th>Percentage Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>80</td>
<td>98.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>99.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>98.40</td>
</tr>
</tbody>
</table>

Specificity in the presence of recipients

The specificity of the analytical method was proved by comparing the spectra of placebo and degradation product of sample solution with that of accuracy sample (Fig. 3).

CONCLUSION

The results and the statistical parameters demonstrate that the proposed UV spectrophotometric method is simple, rapid, specific, accurate and precise. Therefore, this method can be used for the determination of tenoxicam either in bulk or in the dosage formulations without interference with commonly used excipients and related substances.

Acknowledgment: Authors wish to thank RamdevChemicals Pvt. Ltd., Mumbai for providing drug sample and also thank Principal Dr. Sanjay Thonte, Channabasweshwar Pharmacy College, and Latur for providing facilities at college.

REFERENCES

2. British Pharmacopoeia, Published by the deptt. Of health and stationary office under the license from the controller of her majesty; stationary office for the dept. of Health Minister, UK, 2002, 2477.

Source of Support: Nil, Conflict of Interest: None.