Physico Chemical Analysis of *Pongamia pinnata* for Potential Biodiesel Source

Rajakokila M¹, P. Nagendra Prasad², Parameswaran N.K*², Ariharan V.N¹, Meena Devi V.N¹
¹ Department of Biotechnology, Sri Paramakalyani College, Alwarkurichi, Tamilnadu, India.
² Department of Biomedical Engineering, Noorul Islam Centre for Higher Education, 23 Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil, Thuckalay, Tamilnadu, India.

Corresponding author’s E-mail: nkparamesh@gmail.com

Received: 28-06-2017; Revised: 18-10-2017; Accepted: 21-11-2017.

ABSTRACT

The growing demand for fuel and the increasing concern for the environment due to the use of fossil fuel have led to the search of biofuel as a useful alternative and environmentally friendly energy resource. From the time immemorial, plants have been widely used as curative agents for variety of ailments. Concentrated fruits or seeds extract can be found in various herbal preparations which are widely available in market. Nowadays the biomass resources are widely used for the energy purposes. *Pongamia* is one among them which could be used as an energy source. It has been used in India and neighboring regions as a source of traditional medicines. It has been used as animal fodder, green manure, timber, fish poison and fuel. Extract of the plant possess significant anti-diarrhoeal, anti-fungal, anti-plasmodial, anti-ulcercogenic, anti-inflammatory and analgesic activities. The oil obtained from the seeds can be used as biodiesel. It is an alternative source of energy, which is renewable, safe and eco-friendly. In this present study the Physico Chemical properties of the blends of B10 and B20 oils were analyzed and the results were discussed.

Keywords: Pongamia, Fossil Fuel, Biodiesel, Curative Agents.

INTRODUCTION

Pongamia pinnata belongs to the family Fabaceae¹. It is a medium sized glabrous tree. It is adaptable tree for tropical and sub-tropical regions which requires excellent drainage and a sunny location. It grows easily from seed⁴. *Pongamia* is known as Indigenous Beech Pongamia, andHöngen in English, Pungam in Tamil, Pongam in Malayalam, Karanja in Hindi, Kanuga orGanuga in Telugu, Singhdapatra in Sanskrit ⁵. The natural distribution of Pongamia is along coasts and river banks in India and Burma. This species is native to the Asian subcontinent and has been introduced to humid tropical lowlands in the Philippines, Malaysia, Australia, the United States and Indonesia⁶. It is native to humid and subtropical environments. Pongamia thrives in areas having an annual rainfall ranging from 500 to 2500 mm and maximum temperature ranges from 27 to 38°C and the minimum 1 to 16°C⁶. This species grows to an elevation of 1200 m, but in the Himalayan foothills is not found above 600 m. Pongamia can grow on most soil types ranging from stony to sandy to clay but does not do well on dry sands. Pongamia trees can tolerate drought, frost, heat, limestone, sand, and salinity.

It is highly tolerant of salinity and they will grow under conditions ranging from near 0º C up to over 50º C ⁸. It is common along waterways or seashores with its roots in fresh or salt water⁷. The Pongamia is a medium sized evergreen tree with a spreading crown and a short bole, deciduous, sub-evergreen tree that generally attains a height of about 25 m tall and trunk diameter of more than 50 cm. Flowers borne on racemes, are pink, light purple, or white. Flowers are one cm across, zygomorphic, style incurved. The kernels are white and covered by a thin reddish skin. The bark is thin gray to grayish-brown, and yellow on the inside⁹. *Pongamia pinnata* a preferred species for controlling soil erosion and binding sand dunes because of its dense network of lateral roots. Root, bark, leaves, flower and seeds of this plant also have medicinal properties and traditionally used as medicinal plants⁹.

All parts of the plant have been used as crude drug for the treatment of human ailments like tumors, piles, skin diseases, wounds and ulcers ¹⁰. In the traditional system of medicines, such as Ayurveda and Unani, the *Pongamia pinnata* plant is used for anti-inflammatory, anti-plasmodial, anti-nonciceptive, anti-hyperglycemic, anti-lipidperoxidative, anti-diarrhoeal, anti-ulcer, anti-hyperammonic and antioxidant activity ¹¹. The *Pongamia pinnata* known for its multipurpose benefits as timber and fuel¹². Naik et al. 2008 identified as a potential source of biodiesel¹³.

It has been recognized as “Biodiesel”. Because of the presences of saturated and unsaturated fatty acid composition about 20.5% and 79.4%, respectively. The major mono unsaturated fatty acid was oleic acid (46%) whereas linoleic acid (27.1%) and linolenic acid (6.3%) constitutes the total polyunsaturated fatty acid. Low molecular weight fatty acids such as lauric and capric acids occur in very small amount of about 0.1% each¹⁴,¹⁵. In this present investigation the Physico Chemical analysis were carried out the blends of B10 and B20 oils for biodiesel source.
MATERIALS AND METHODS

Collection

The *Pongamia pinnata* seeds were collected from Kani settlement of Mothiramali, of Agasthiamalai Biosphre Reserve Forest of Kanyakumari District in Tamilnadu, India.

Extraction

The seeds were dried, dehulled and the impurities were removed by hand picking. The seed were crushed by mechanical method, using an oil expeller. The oil was filtered and stored for further analysis.

Blend preparation

The diesel used for the experiment was purchased at Bharat Petroleum, Marthandam Tamilnadu, India. The blends were made on a volume basis and stored in glass bottles at room temperature. A blend of 20% neat oil with 80% conventional petroleum diesel, by volume, is termed “B20” and a blend of 10% neat oil with 90% conventional petroleum diesel, by volume, is termed “B10”. The Physico Chemical studies were carried out for the blends of biodiesel and compared with the ASTM and EN standards.

Physico-Chemical Analysis

Pongamia pinnata oil blends (B10 and B20) were analyzed for various physical chemical properties. The physical parameters studied were pH, specific gravity, viscosity, density, and significant biodiesel properties like fire point, flash point, smoke point, cloud point, carbon residue. The general physical parameters include conductivity, salinity, total dissolved solid, and total dissolved oxygen. The acidimetric constant chemical properties such as the Acid value, Iodine value and Saponification value were analyzed. The pH was determined by using Elico pH meter. The specific gravity and density was measured by using Borosil glass bottle method. Viscosity was measured by using calibrated Ostwald Viscometer. The fire point was analyzed by using Cleveland open cup apparatus. The flash point was determined by using Pensky- Martens closed cup tester apparatus. The cloud point was obtained by using Deep vision cloud point apparatus. The pour point was observed by using Seta Smoke point apparatus. Carbon residue was determined by using Conradson carbon residue apparatus. The econometric constant namely the Iodine value was determined by Wijs method. The acidimetric namely acid value and saponification value were measured by the standard AOAC method.

RESULTS

The oil content of the dried seed of *Pongamia pinnata* is about 40% on dry weight basis. The General physical properties of the biodiesel blends (10% and 20%) such as pH, Specific gravity, Density, Viscosity, fire point, flash point, Cloud point, Pour point, Smoke point, Carbon residue were measured. The results were given in the Table-1. The chemical properties such as Acid value. Iodine value and Saponification value were recorded for the biodiesel blends and given in the Table 2. The Ultrasonic parameters namely ultrasonic velocity, ultrasonic compressibility, relaxation time, acoustic impedance were studied for diesel and the blends of *Pongamia pinnata* oil with conventional diesel with B10 and B20 proportions are furnished in the Table 3.

Table 1: General Physical properties of *Pongamia pinnata* oil blends B10, B20 and diesel

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pongamia pinnata Oil Blends</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B10</td>
<td>B20</td>
</tr>
<tr>
<td>pH</td>
<td>3.98</td>
<td>4.74</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.8355</td>
<td>0.8489</td>
</tr>
<tr>
<td>Density (g/ml)</td>
<td>1.2215</td>
<td>1.2411</td>
</tr>
<tr>
<td>Viscosity (Nm-2s)</td>
<td>3.850</td>
<td>4.500</td>
</tr>
<tr>
<td>Fire point</td>
<td>53.7</td>
<td>57.6</td>
</tr>
<tr>
<td>Flash point</td>
<td>46.9</td>
<td>55.8</td>
</tr>
<tr>
<td>Cloud point</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Pour point</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Smoke point</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Carbon residue</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

DISCUSSION

The pHs of biodiesel blends is lower than the petro diesel which also indicates the biodiesel is more acidic than the conventional diesel due to the presence of fatty acid. The specific gravity is important when considering the spray characteristic of the fuel within the engine. Higher
Density and Viscosity of the liquid fuels affects the flow
properties of the fuel, such as spray automation,
subsequent vaporization and air-fuel mixing in the
compression chamber. The change in spray can greatly
alter the compression properties of the fuel mixture. The
Specific gravity, Density and viscosity of vegetable oil are
several times higher than that of diesel. By mixing the
vegetable oil with the conventional diesel with 10% and
20% the Specific gravity, Density and Viscosity were found to
slightly higher than that of diesel and it is within the
range of the ASTM standard value of the biodiesel. The
fire point of the blends B20 is slightly higher and B10 is
lesser than that of petro diesel, and which falls within the
range of ASTM standard. The flash point of these B10 is
higher and B20 is slightly higher than that of petro diesel
and the values are within the range specified for petro
diesel. So it clearly indicated that biodiesel is safer to
handle than fossil fuel.

**Table 2: Chemical Properties of *Pongamia pinnata* oil
blends B10, B20 and diesel**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pongamia pinneta Oil Blends</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B10</td>
<td>B20</td>
</tr>
<tr>
<td>Acid value (mg KOH/g)</td>
<td>0.44</td>
<td>0.58</td>
</tr>
<tr>
<td>Iodine value</td>
<td>89.95</td>
<td>93.45</td>
</tr>
<tr>
<td>Saponification value</td>
<td>192.43</td>
<td>198.75</td>
</tr>
</tbody>
</table>

The cloud point is slightly higher than the petro diesel,
and the pour point is slightly higher than the petro diesel.
The Smoke points of the biodiesel blend are lesser than
the petro diesel but within the ASTM standard value. The
carbon residue is slightly higher than the petro diesel. The
medium value of carbon residue may be due to the
impurities present in the biodiesel blends.

The acid value of blends indicates that the amount of
fatty acid present in the sample. The Acid value is lower
than that of ASTM standard because of the presence of
the long chain unsaturated fatty acid in the blends. The
number of double bonds present in the vegetable-oil is
calculated by treating with iodine. The higher the iodine
number is the amount of iodine needed to be saturate or
brake the double bonds in the fatty acid. Here the iodine
values of biodiesel blends are higher than the petro diesel
and it is within the range of ASTM standard of the
biodiesel. The Saponification value can indicate the non-
fatty acid impurity and the amount of alkali that could be
required by the fat for its conversion to soap. In the
biodiesel blends the Saponification value of B10 is higher
and B20 is higher than that of the petro diesel. However
the Saponification value is found to be within the
acceptable-range of biodiesel.

The ultrasonic study is a novel method for screening the
biodiesel. It is a cheap, quick and best method for the
screening of vegetable oil for its potentiality for
biodiesel. The ultrasonic velocities and Acoustic impedance of the biodiesels were very close to
that of diesel. The ultrasonic compressibility and the
relaxation time of the biodiesel blends have a slight less
than the diesel. These variations are because of the
slight changes in their density with that of the petro-
diesel.

CONCLUSION

Pongamia can be cultivated from Kanyakumari to the foot
hills of Himalayas, because of the adaptability of the
plant. It occurs in wild as well as cultivated along the
roadsides and railway tracks as an avenue tree. There is a
possibility of collecting the seeds in large scale from the
natural vegetation. It thrives well in the various types of
soil and climatic conditions. Physical properties of the oil
bloods are almost equal to or very near to ASTM and EN
standards. The plant can be used as an avenue tree,
ornamental, medicinal and also possess timber values. It
can be also used as a biomass source for energy purposes.
The nectar produced from the trees are used for the
apiiculture purposes. It flowers mostly in the summer
season and it adds beauty to the environment. The main
propagation is from seeds. The oil cake is used as an
animal feed. It can be used as a bio manure and pesticide
also because of the high protein content. Because of the
above reasons this plant could be exploited as alternative
source for renewable energy. The oil content is above
40% and the yield potential is also high. The oil as well as the gas emission from the oil is nontoxic. As the plant belongs to the family Fabaceae, it increases the soil fertility by producing root nodules in the root system. It has great impact on the environmental nitrogen fixation and enhances the nitrogen content in the lithosphere.

Acknowledgements: The authors are thankful to the Department of Science and Technology Govt. of India (DST/TSG/AF/2012/01 dated 31 December 2012) for financial assistance to carry out this investigation. The authors are indebted to the Chancellor, Vice Chancellor and the Management, Noorul Islam University Kumaracoil for their valuable guidance, constant encouragement and providing basic facilities throughout the study.

REFERENCES

Source of Support: Nil, Conflict of Interest: None.