Causes and Management of Major Microbial Infections in Upper Sensory Organs of the Body

1Chakraborty Tulshi*, 2Saini Vipin, 3Singh Gagandeep, 4Govila Divyansh, 5Pandurangan A
1M.M College of Pharmacy, Maharishi Markandeshwar University, Mullana(Ambala), India.
2Maharishi Markandeshwar University, Solan, Himachal Pradesh, India.
*Corresponding author’s E-mail: tuldiotulshi@gmail.com

Received: 06-12-2017; Revised: 28-12-2017; Accepted: 14-01-2018.

ABSTRACT
In the human body, there have lots of sensory organ, among them the eye, ear, nose and throat are most important upper sensory organ of the body. Above all, these sensory organs basically composed of soft tissue. As results most of the microorganisms easily grow, spread and causes infection and disease and at last damage these organs which are fatal to human life in world wide. Like an ophthalmic disease, Trachoma is the major infectious cause of blindness and it is the eighth most common blinding disease in worldwide, caused by the obligate intracellular bacterium Chlamydia trachomatis. Ear infection, Otitis media is a general term for centre ear irritation and might be characterized: clinically as either intense otitis media (AOM) or otitis media with effusion (OME), caused by environmental hazards and Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhal, Staphylococcus aureus or Group A Streptococcus. Nose infection and disease; Nasal vestibulitis is a typical disease in youngsters and grown-up and is produced taking after nose picking, unreasonable cleaning of the nostrils, caused by Staphylococcus aureus, Staphylococcus aureus, herpes simplex and herpes zoster. Throat and pharynx infection and disease; acute pharyngitis/tonsillitis, portrayed by the inflammation of back pharynx and tonsils, caused by Group C Streptococcus, C. Pneumonia, M. Pneumonia, Rhinovirus, Coronavirus and Adenovirus, Influenza and Parainfluenza virus. So, the best way for the management of the upper sensory organ disease is prevention or to use particular antibiotic (choice of drug) for the specific microorganism for the specific disease of the particular organ.

Keywords: Trachoma, Otitis, Nasal Vestibulitis, Tonsillitis, Microbial infection, Microbial disease

INTRODUCTION
Basically eye, ear, nose and throat are most important upper sensory organ of the human body. Above all, these sensory organs mostly composed of soft muscle and soft tissue. As results most of the microorganisms easily grow and spread and causes infection and disease and damage these organs which are fatal to human life in world wide. Among them ophthalmic disease, Trachoma is the major infectious cause of blindness worldwide. Overall, it is the eighth most common blinding disease.1 Trachoma is caused by the obligate intracellular bacterium Chlamydia trachomatis.2 Ear infection, Otitis media is a general term for centre ear irritation and might be characterised: clinically as either intense otitis media (AOM) or otitis media with effusion (OME).3 Otitis media have been regularly an intense disease of adolescence that is most common in youngsters amid their first years of life.4 It’s caused by environmental hazards and Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhal, Staphylococcus aureus or Group A Streptococcus.4–5 Nose infection and disease; nasal vestibulitis is a typical disease in youngsters and grown-up and is produced taking after nose picking, unreasonable cleaning of the nostrils or incredible cleaning out of the nose. At times the sickness might be auxiliary to outside bodies inside the nasal depression,6 it’s caused by Staphylococcus aureus, Staphylococcus aureus, herpes simplex, herpes zoster. Throat and pharynx infection and disease; acute pharyngitis/tonsillitis, portrayed by the inflammation of back pharynx and tonsils, is a typical condition seen in outpatients looking for a human services arrangement. Its principle indications are a sore throat and fever,7 it caused by Group C Streptococcus, C. Pneumonia, M. Pneumonia, Rhinovirus, Coronavirus and Adenovirus, Influenza and Parainfluenza virus.

Causes and Management of Upper Sensory Organ Infection
Trachoma
Trachoma is the major infectious cause of blindness worldwide. Overall it is the eighth common most blinding disease.1 Trachoma is caused by the obligate intracellular bacterium Chlamydia trachomatis. Infection with trachoma is most commonly found in children and with repeated re-infection it can lead to scarring complications and blindness in late childhood and adult life. It is transmitted through the discharge from infected children eyes and passed on by hands (fingers), on clothes, or by flies that land on the eyes of non infected child2. Recurrent episodes of conjunctival infection and the

Available online at www.globalresearchonline.net
© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
associated chronic inflammation it causes initiate a scarring process that ultimately leads to irreversible blindness. It is considered that approximately 1.3 million people are blind from this disease and additionally 1.8 million have little vision. Trachoma is endemic in more than 45 countries, particularly in sub-Saharan Africa, the Middle East, and Asia.11

It may lead to trachomatous scarring, trichiasis, and corneal opacity, causing blindness in adults. It is one of the most common causes of preventable blindness in the world, representing 3.6% of total blindness. Traditional antibiotic strategy has been 1% tetracycline ointment, twice daily for 6 weeks or intermittently for 6 months.12

\textbf{Causative Agent} 14

\textit{Chlamydia trachomatis} (types: A, B, Ba, and C) although the genital serotypes (D to K)\textbf{Causative Agent} 14

Endemic Tacoma is caused by the four ocular stereotypes of C. trachomatis (types: A, B, Ba, and C). Despite the fact that the genital stereotypes (D to K) of Chlamydia trachomatis can infect the conjunctiva causing also ophthalmia neonatorum in newborn children or incorporation conjunctivitis in adult these are normally separated scenes for the person, which don’t guide for blinding. Disease is likely typically procured through living in close physical nearness to a contaminated individual, with the family as the standard unit for transmission.

\textbf{Symptoms} 17-20

- Eye discharge of the patients
- Swollen eyelids and repetitive endless irritation
- Trichiasis (move-in eyelashes)
- Swelling of patients lymph nodes in front of the ears
- Patients sensitive to bright lights
- Increased heart rate
- As the scar tissue masses, it moreover contracts, influencing the eyelids to roll inwards towards the eye (entropion) and the eyelashes to scratch the visual surface (trichiasis).
- The most infection sequela from Tacoma is blinding corneal opacification.

\textbf{WHO simplified trachoma grading} 21

- TF-Trachomatous inflammation-Follicular: its presence at least five follicles (each >0.5 mm in distance across) in the upper tarsal conjunctiva.
- TI-Trachomatous inflammation-Intense: Pronounced inflammatory thickening of the tarsal conjunctiva that darkens the greater part of the profound typical vessels.
- TS-Trachomatous scarring: The presence of scarring in the tarsal conjunctiva.
- TT-Trachomatous trichiasis: At least one lash rubs on the eyeball.
- CO-Corneal opacity: Easily noticeable corneal opacity over the pupil.

\textbf{Treatment} 12,22

Trichiasis treatment choices
The essential point of treatment for trichiasis is to keep visual deficiency because of injury from the lashes scraping the cornea.

Medications might be isolated in non-surgical medicines and surgical medications:

Non-surgical treatments
- Epilation (manual expulsion of eyelashes, for the most part with forceps);
- Eyelid-taping (to compel eyelashes back to rectify position);
- Surgical medicines Surgical techniques for lash removal or expulsion:
 - Electrolysis (a fine needle used to pass electric current to the base of lash follicle)
 - Cryotherapy (freezing treatment to the lash follicles)
 - Excision of lash-bearing tissue.

Surgical treatments
Wide assortments of surgical choices are accessible for the treatment of trachoma. In trachoma-endemic nations the most generally utilized methods are:
- Bilamellar tarsal rotation (BLTR): full-thickness incision through the eyelid, including the scarred tarsal plate, orbicularis oculi and the skin, fixation with everting sutures;
- posterior lamellar tarsal rotation (PLTR) / Trabut: entry point through the scarred tarsal plate and conjunctiva just, leaving the skin and orbicularis oculi in place, fixation with everting sutures;
- Tarsal progress and rotation: incision of the tarsal plate and turn of the terminal bit. The upper part of the tarsus is separated from the anterior lamellar, progressed and fixed with sutures.

Drugs
The WHO suggests two anti-microbial treatment administrations: either 1% antibiotic medication, eye ointment twice every day for a month and a half or a solitary oral formulation of azithromycin.

Prevention
- Face washing and hand-washing. Keeping defy clean help break the cycle of reinfection.
- Controlling fleas. Lessening fly populaces can help wipe out a noteworthy wellspring of transmission.
- Proper squander administration. Appropriately discarding creature and human waste can quit reproducing justification for flies.
- Improved access to water. Having a new water source close-by can help enhance sterile conditions.

Causes and Management of Upper Sensory Organ Infection

Otitis Media
Otitis media is a general term for centre ear irritation and might be characterised: clinically as either intense otitis media (AOM) or otitis media with effusion (OME). Otitis media is regularly an intense disease of adolescence that is most common in youngsters amid their first years of life. AOM speaks to a bacterial superinfection of the centre ear liquid and OME speaks to a sterile emission that has a tendency to die down suddenly. Albeit centre ear emission is available in both cases, this clinical characterization is vital in light of the fact that anti-infection agents are by and large useful just for AOM. AOM may happen as right on time as the first month of life, however, by 90 days 13% of kids have suffered a solitary scene.

The possibility of encountering AOM increments with age: 60% at one year, 70% at 3 years, and 80% at 4 years. Beginning with a solitary scene, rehashed scenes, primarily in chilly seasons, make the centre ear be loaded with fluid, a condition known as otitis media with effusion (OME). This infers a fluctuating conductive loss of hearing in the scope of 15–40dB. Significant hearing disappointment has appeared in youngsters with a past filled with OME in the first 3 years of life contrasted with kids who had no otitis.

![Figure: 2(a) AOM](image)

Figure: 2(a) AOM

![Figure: 2(b) OME](image)

Figure: 2(b) OME

Figure: 2(a) Acute otitis media (AOM), 2(b) otitis media with effusion (OME),

Courtesy from: Anupama Kuruvilla et al.
Causative Agent 4–5, 8

It caused by environmental hazards and *Streptococcus pneumoniae, Haemophilus influenzae*, or *Moraxella catarrhalis*, *Staphylococcus aureus* or Group A *Streptococcus*.

Microbes which are responsible for the Otitis Media

<table>
<thead>
<tr>
<th>MICROBES</th>
<th>Proportion of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIA</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>25-50%</td>
</tr>
<tr>
<td>Haemophilus influenza</td>
<td>15-30%</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td>3-20%</td>
</tr>
<tr>
<td>Group A streptococcus</td>
<td>1-5%</td>
</tr>
<tr>
<td>VIRUS</td>
<td></td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>41-56%</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>50%</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>17-46%</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>30-44%</td>
</tr>
<tr>
<td>Influenza (all types)</td>
<td>23-35%</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>34%</td>
</tr>
<tr>
<td>Parainfluenza (all types)</td>
<td>33%</td>
</tr>
</tbody>
</table>

Causes 5–8, 26–27

Environmental (tobacco smoke, presentation to the group) and hereditary elements were considered as hazard variables for otitis media. OM normally exhibits as intense OM (AOM), which is intense irritation of Eustachian tube caused by microscopic organisms, the central secludes are *Streptococcus pneumoniae, Haemophilus influenzae*, or *Moraxella catarrhalis* with little commitments from *Staphylococcus aureus* or Group A *Streptococcus* or as OM with effusion (OME), which is gathering of liquid in the centre ear without intense manifestations, for example, torment and fever. The culpable creatures are the generally discovered Group A *Streptococci* and *Methicillin*-safe *Staphylococcus aureus* (MRSA).

Symptoms 28, 31

- Ear infection
- AOM regularly happens in patients with an upper respiratory tract disease
- Most regular introducing indications are fever and otalgia.
- Spiking fever, related with otorrhea, postauricular oedema, and otalgia
- Acute otitis media presents with an ear infection (otalgia), fever, hearing disability and a purulent dis-charge (otorrhea) through a puncturing of the tympanic layer (or tympanostomy tube).

- In babies, the age amasses most inclined to otitis media, indications are non-particular and may incorporate peevishness, fretfulness, episodes of shouting, anorexia, regurgitating, fever and every so often, shakings.

Diagnosis 32, 33

- Pneumatic otoscopy and tympanometry survey the versatility of the ear drum, and if a non-punctured ear drum is stationary this shows the nearness of a centre ear emanation; both procedures depend on changing the ear channel weight, with pneumatic otoscopy picturing the ear drum specifically and tympanometry evaluating portability by methods for sound reflection.

- Otoscopy - microscopy with a hand-held otoscope instrument is the standard technique utilised for representation of outer ear channel and Tympanic film for indications of otitis media in paediatric and general practice.

- Myringotomy - Myringotomy with yearning is a targeted technique for the appraisal of centre ear status and the weight of centre ear liquid

- Tympanometry - Tympanometry is a utilization of impedance audiometry, reasonable for the conclusion of centre ear emission appraisal of tympanic film apertures and for the estimation of centre ear weight.

Treatment 34, 35

Initial prompt or deferred anti-infection treatment

Recommended first-line treatment:

- Amoxicillin (80 to 90 mg/kg every day in 2 partitioned measurements)
- Or Amoxicillin-clavulanate (90 mg/kg every day of amoxicillin, with 6.4 mg/kg every day of clavulanate [amoxicillin to clavulanate proportion, 14:1] in 2 isolated dosages)
- Elective treatment (if penicillin hypersensitivity):
- Cefdinir (14 mg/kg every day in 1 or 2 dosages)
- Cefuroxime (30 mg/kg every day in 2 isolated measurements)
- Cefpodoxime (10 mg/kg every day in 2 partitioned measurements)
- Ceftriaxone or Clindamycin (30-40 mg/kg, every day in 3 isolated dosages) with or without third-era Cephalosporin. Failure of second anti-infection Clindamycin (30-40mg/kg every day in 3 partitioned measurements) in addition to third-era cephalosporin.
Topical formulations:

- Ciprofloxacin/Hydrocortisone (Cipro HC Otic) - 3 drops twice day by day.
- Hydrocortisone/neomycin/polymyxin B (Cortisporin Otic) - 4 drops three to four times day by day.
- Ofloxacin (Floxin Otic) - 5 drops twice day by day (10 drops in patients more seasoned than 12 years)
- **Along with oral:** Analgesics: Acetaminophen 15 mg for every kg of body weight
- Antipyrine / benzocaine: Auralgan 2 to 4 drops three to four times day by day
- **Along with oral:** Ibuprofen 10 mg for every kg of body weight.

Prevention

Breast-feeding, utilising family or small-group day tend to newborn children and babies and staying away from an introduction to family tobacco smoke are the primary preventive measures against intense otitis media (AOM).

It is additionally valuable to inoculate youngsters who have repetitive otitis media with flu and the pneumococcal immunisations

Recommended heptavalent conjugate pneumococcal antibody regimen in already non-inoculated babies and youthful kids:

<table>
<thead>
<tr>
<th>Age at 1st dose (months)</th>
<th>First series (at a 2-month interval)</th>
<th>Additional dose (at 12-15 months interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6</td>
<td>3 doses</td>
<td>1 dose</td>
</tr>
<tr>
<td>7-11</td>
<td>2 doses</td>
<td>1 dose</td>
</tr>
<tr>
<td>12-23</td>
<td>2 doses</td>
<td>Unnecessary</td>
</tr>
<tr>
<td>Healthy children</td>
<td>1 dose</td>
<td>Unnecessary</td>
</tr>
<tr>
<td>Children with underlying disease or immune-suppression</td>
<td>2 doses</td>
<td>Unnecessary</td>
</tr>
</tbody>
</table>

Causes and Management of Upper Sensory Organ Infection

Nasal Vestibulitis

Nasal vestibulitis is a typical disease in youngsters and grown-ups and is produced taking after nose picking, unreasonable cleaning of the nostrils or incredible cleaning out of the nose. At times the sickness might be auxiliary to outside bodies inside the nasal depression.\(^9\) Nasal vestibulitis is an intense aggravation of the tissue around the nasal vestibule—a piece of the front nasal cavity. The zone is lined by keratinized stratified squamous epithelium and bottomless hair follicles and is a natural speciality of *Staphylococcus aureus*, with assessed carriage rates of 20 % in the overall public.\(^38\) It can be in the type of contamination of the skin or pilosebaceous unit. Bacterial nasal commensal generally by *Staphylococcus aureus* alongside any disturbance of covering epithelium fault for that, this can be caused by nose picking, nasal injury, overwhelming nose blowing or nasal remote.\(^39\) or viral diseases (*herpes simplex and herpes zoster*). Outside bodies as often as possible cause vestibulitis in youngsters because of purulent release.\(^40\)

Images 3(a,b): Nasal Vestibulitis Courtesy from: Janelle N. Ruiz\(^41\)

Causative Agent \(^9, 38-40\)

Staphylococcus aureus

Herpes simplex

Herpes zoster

Causes \(^42-45\)

Staphylococcus aureus is a piece of the human microbiota and stays a standout amongst the most vital group and nosocomial-gained pathogens, with high rates of clinic related contaminations.

Symptoms \(^46\)

- Nasal hindrance
- Cerebral pain and facial agony
- Running nose
- Nasal draining
- Notice issue
Diagnosis

Physical examination demonstrated that the patient had an expansive nasal extension. A vast submucosal thickening of the front septum felt strong masses on palpation. There were no cutaneous sores of nasal vestibule or her face.

The majority profile was white and hypovascular. Perichondrium was stripped utilizing periosteal lift and the majority were completely angled out until the point when the encompassing typical mucosa could be unmistakably recognized.

Endoscopic examination demonstrated a front nasal septum puncturing which may be because of the last surgery.

Treatment

Antibiotics are used among them:

Dicloxacillin oral formulation for one to two weeks.

Mupirocin topical ointment two to three times daily for chronic nasal vestibulitis, rifampicin oral formulation two times in a day for four days.

Resistance rates against *Staphylococcus aureus*

Nitrofurantoin, quinupristin-dalfopristin, and trimethoprim-sulfamethoxazole were resolved as 0.3%, 2.4%, and 6.1%, individually. Penicillin (1,033/1,033; 100%), erythromycin (183/1,034; 17.7%), rifampicin (156/1,116; 14%), gentamicin (145/1,116; 13.8%), and clindamycin (108/977; 11.1%) were resolved to be antimicrobials with the most noteworthy resistance.

Prevention

Consumers should know about potential food contamination in the home and during cooking vegetable wash thoroughly is important and maintain prevent contamination and cross-contamination and maintaining basic focuses.

Causes and Management of Upper Sensory Organ Infection

Pharyngitis/Tonsillitis

Acute pharyngitis/tonsillitis, portrayed by the inflammation of back pharynx and tonsils, is a typical condition seen in outpatients looking for human services arrangement. Its principle indications are a sore throat and fever. Group A *Streptococcus* (GAS) is a generally experienced pathogen that causes an expansive range of sicknesses. Clinical components of GAS pharyngitis are vague from pharyngitis caused by other pathogens. Palatalpetechiaeand scarlatiniform rash, albeit exceedingly specific, are uncommon. Other bacterial reasons for pharyngitis are Group C *Streptococcus* (5% of aggregate cases), *C. pneumonia* (1% of aggregate cases), *M. pneumoniae* (1% of aggregate cases) and anaerobic species (1%). Between infections Rhinovirus, Coronavirus and Adenovirus represent the 30% of the aggregate cases, Epstein-Barr infection for 1% of aggregate cases, *Influenza and Parainfluenza* for around 4% of aggregate cases.

Causes

Group A *Streptococcus* (GAS) is a generally experienced pathogen that causes an expansive range of sicknesses. Clinical components of GAS pharyngitis are vague from pharyngitis caused by other pathogens. Palatalpetechiae and scarlatiniform rash, albeit exceedingly specific, are uncommon. Other bacterial reasons for pharyngitis are Group C *Streptococcus* (5% of aggregate cases), *C. pneumonia* (1%), *M. pneumoniae* (1%) and anaerobic species (1%). Between infections Rhinovirus, Coronavirus and Adenovirus represent the 30% of the aggregate cases, Epstein-Barr infection for 1%, and *Influenza and Parainfluenza* infection for around 4%. Early determination and treatment are prescribed to anticipate supplicative and non-suppurative postinfectious sequelae, for example, peritonsillar abscesses, lymphadenitis, acute rheumatic fever (ARF), and post-streptococcal glomerulonephritis.
Symptoms 56-57

- A sore throat.
- Mouth pain
- Fever.
- The span of disease.
- The frequency of backsliding.
- The occurrence of difficulties (suppurative intricacies, intense rheumatic fever, post-streptococcal glomerulonephritis).
- Unfriendly occasions
- feeling sick

Diagnosis 58-59

- Doctor will check for any white or dim patches, swelling, and redness. Doctors may likewise look in your ears and nose. To check for swollen lymph hubs, they will feel the sides of your neck.
- ordinary throat culture.
- Fast antigen-identifying tests (RADT) for determination of GAS exhibit brilliant specificity (roughly 95%).
- Early analysis with imaging and blood cultures.
- Analysis utilizing CT sweep of the head and neck with IV differentiates is viewed as better than a neck ultrasound as it is better in finding the anatomical augmentation of the thrombus.

Treatment 59-60

Treated with radiotherapy, chemotherapy, biologic specialist as interferon alpha, and surgery in HIV-positive patients it can be made to do with HAART or with a mix of this restorative approach. Treatment with paclitaxel is constrained to patients with repetitive sickness after a first-line CHT. Oropharyngeal KS was surgically treated. Both patients were treated with 1 mg/kg/day methylprednisolone, which were decreased by dividing the dosage each 3 days.

Prevention 57, 59-60

Wash his or her hands completely and every now and again, particularly subsequent to utilizing the can and before eating. Avoid sharing sustenance, drinking glasses, water jugs or utensils. Replace his or her toothbrush in the wake of being determined to have tonsillitis. Teach your kid to hack or wheeze into a tissue or, when fundamental, into his or her elbow. Teach your youngster to wash his or her hands in the wake of sniffing or hacking.

CONCLUSION

Basically upper sensory organs composed of soft tissue, as a result, most of microorganisms easily can infect and grow and produce diseases. In particular organ infect by specific organism or by multiple organisms. So, the best way for the management of the upper sensory organ disease is prevention or to use particular antibiotic (drug) for the specific microorganism for the specific disease of the particular organ.

REFERENCES

30. Yeoh XY, Lim PS, Pua KC, Case Report Case of Chronic Otitis Media with Intracranial Complication and Contralateral Extracranial Presentation, Case report in Otolaryngology, 2016, 1-4.

35. Ramakrishnan K, Sparks RA, Berryhill WE, Diagnosis and Treatment of Otitis Media, American family physician, 76(11), 2007, 1650-1658.

41. Ruiz JN, Belum VR, Boers-Doets CB, Kamboj M, Babady NE, Tang YW, Valdez TA, Lacouture ME, Nasal vestibulitis due to targeted therapies in cancer patients, Support Care Cancer, 23(8), 2015, 2391-8. doi:0.1007/s00520-014-2580-x

46. Khushu KA, Study of anatomical variations of lateral wall of nose by endoscope, Unique Journal of Medical and Dental Sciences, 2(June), 2014, 117-121.

Source of Support: Nil, Conflict of Interest: None.