Research Article

Theoretical Spectroscopic Study (IR, Raman, UV, and NMR) for Furan and Two of its Derivatives

Safaa Jumma Tumaa, Shatha Fadil AL-Saidi*

College of Sciences, Al-Nahrain University, Baghdad, Iraq. *Corresponding author's E-mail: shathaalsaidi1954@gmail.com

Received: 28-09-2018; Revised: 30-10-2018; Accepted: 10-11-2018.

ABSTRACT

Furan and its derivatives are important compounds in industrial applications, biological activity, bio-fuels food and nutrition. The ground-state molecular geometry, and harmonic vibrational frequencies with infrared intensities and Raman activities, of furan (F) and its derivatives [2- methylfuran (MF) and 2, 5- dimethylfuran (DMF)] were computed, by using the Density Functional Theory (DFT/B3LYP) method plus the basis set cc-pVTZ. The time-dependent (TD-DFT) was performed to obtain the electronic absorption spectra. Furthermore the chemical shifts of the nuclear magnetic resonance were calculated by the Gauge-Invariant Atomic Orbital (GIAO) method. The result showed that the Furan ring bond angle C2O1C5 was lower than the 2-methylfuran and 2, 5- dimethylfuran, due to the attachment of methyl group at C2 position in 2-methylfuran, and C2, C5 positions in 2,5-dimethylfuran molecules. The vibrational spectra demonstrated that the ring C-C symmetric and asymmetric stretching vibrations, ranged between 1414- 1033 cm⁻¹. These vibrations decreased in the following order (F > MF > DMF), while the C=C stretching vibrations decreased in the opposite order (DMF > MF > F). The UV spectra of furan and its studied derivatives in gas phase and solvent (ethanol) showed one peak. Therefore the type of transition is $\pi \rightarrow \pi^*$. The NMR for the protons (C=CH-) of furan ring illustrated more shielding in MF than F molecule. Also in DMF molecule the protons demonstrated a high shielding, which influence by the presence of CH3 donating group.

Keywords: Furan, 2- methylfuran, 2, 5- dimethylfuran, DFT, Vibrational spectra, UV spectra, and NMR spectra.

INTRODUCTION

he DFT-B3LYP method is widely used in many investigations. This method gives reasonable energies, molecular structures, vibrational frequencies, UV-Vis, and nuclear magnetic resonance, in addition, it needs less computation resource ¹.

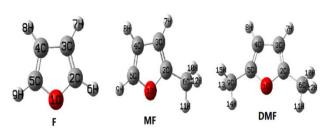
Furan (F) and its derivatives are significant molecules, due to its high energy density, it is also considered in the exchange of fuel, plus its importance in the of biology and industries fields ². Furan is a heterocyclic organic compound colorless liquid, highly volatile, flammable, has low solubility in water, and low boiling point ^{3,4}. 2- Methyl furan (MF), and 2,5- dimethyl furan (DMF) have attracted the attention, since they have a greater volumetric energy density, lower water solubility, high boiling point, and higher octane number ⁽²⁾. These properties make to convert abundant renewable biomass resources into liquid fuels, which may minimize the dependence on petroleum ^{3,5}.

The target of the present theoretical work was to calculate the molecular optimized geometry. From the computed optimized geometrical parameters. Then the vibrational spectra results were employed to characterize the harmonic vibrational wave numbers in the ground state, and the NMR spectra. Also the electronic properties such as: the molecular electrostatic potential (MEP), HOMO, and LUMO energies, plus the electronic absorption spectra for the optimized molecule were computed. All the theoretical calculations were done by using the density functional theory DFT /B3LYP method with the cc-pVTZ (2d,2p) basis set level, for furan (F), 2-methylfuran (MF), and 2,5- dimethylfuran (DMF) molecules.

Computational Details

The DFT is a significance quantum chemical method (1) due to its high accuracy (2) consuming short time ^{6,7}. The time-dependent density functional theory (TD-DFT) gives a satisfactory theoretical result when compared with experiment work, for electronic absorption spectra ⁸. The B3LYP with the GIAO method is one of the most common approaches for calculating the nuclear magnetic shielding tensors ⁹. The present calculations were performed using the Gaussian 09 program on a windows-XP operating PC¹⁰.

The molecular structure in ground state for the studied compounds was examined by the DFT with the B3LYP/ ccpVTZ (2d, 2p) basis set, utilizing the vibrational frequencies, UV-Vis, NMR spectra. Electronic absorption spectra, vertical excitation energies, maximum absorption wavelengths (λ max), and oscillator strengths were computed by the (TD-DFT) methods. The GIAO method was employed to evaluate the nuclear magnetic shielding tensors.


International Journal of Pharmaceutical Sciences Review and Research

Available online at www.globalresearchonline.net

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

RESULTS AND DISCUSSION

Molecular geometry

Figure 1: The calculated molecular structure scheme, for the studied compound along with their atom numbering.

The calculated molecular structure results for F, MF, and DMF molecules were presented in figure 1, and Table 1. The calculations outcome revealed that the structural parameter data were coincidence with the available theoretical and experimental results for Furan molecule, Table 1^{12, 13}.

The furan ring bond angle $C_2O_1C_5$ demonstrated small decreasing in the following order F, MF, DMF. This due to the substitution of one methyl group in C_2 position, or two groups in C_2 and C_5 positions.

Table 1: The optimized geometry data of F (compared with other works), MF, and DMF molecules.

		Other	Work					
Structural	E	xp.	Theor	etical	This wo	rk DFT cc-pVTZ	Z (2d, 2p)	
parameter	(13)	(12)	(13)	(12)				
			F			MF	DMF	
			Bond le	ngth in (A°)				
0 ₁ -C ₂	1.362	1.362	1.361	1.354	1.361	1.367	1.369	
O ₁ - C ₅						1.367		
C ₂ =C ₃	1.361	1.361	1.354	1.349	1.355	1.359	1.357	
C ₄ =C ₅						1.353		
C ₃ -C ₄	1.431	1.431	1.438	1.433	1.431	1.432	1.431	
C ₂ -C ₆						1.489	1.489	
C ₂ -H ₆	1.075	1.075	1.075	1.069	1.075			
C ₃ -H ₇	1.077	1.077	1.076	1.070	1.076	1.076	1.077	
C ₄ -H ₈					1.076	1.076	1.077	
C₅-H ₉					1.075	1.075		
C ₆ -H ₁₀						1.090	1.092	
C ₆ -H ₁₁						1.088	1.089	
			Bond ang	gle in degree				
C ₂ O ₁ C ₅	106.5	106.7	106.8	106.6	106.8	107.6	108.1	
O ₁ C ₂ C ₃	110.7	110.7	110.4	110.8	110.4	109.2	109.1	
O ₁ C ₅ C ₄					110.4	110.1	109.1	
$C_2C_3C_4$	106.0		106.2		106.1	106.9	106.8	
C ₃ C ₄ C ₅		106.0		105.9	106.1	106.2	106.8	
C ₃ C ₂ C ₆						134.1	134.2	
O ₁ C ₂ C ₆						116.7	116.6	
$O_1C_2H_6$	115.9	115.9	115.9	115.8	116.0			
$C_3C_2H_6$	133.4		133.6		133.6			
C ₂ C ₃ H ₇	126.1	126.1	126.5	126.3	126.4	127.1	126.1	
$C_4C_3H_7$	127.9		127.3		127.4	125.2	127.1	
$C_3C_4H_8$					127.4	127.3	127.1	
C ₅ C ₄ H ₈					126.4	126.4	126.1	
O ₁ C ₅ H ₉					116.0	116.1		
C₄C₅H ₉					133.5	133.8		
$C_2C_6H_{10}$						111.4	111.7	
$C_2C_6H_{11}$						109.9	109.8	
$H_{10}C_6H_{11}$						108.1	107.9	
$H_{10}C_6H_{12}$						107.6	107.6	
$C_5C_9H_{13}$							111.7	
$C_5C_9H_{14}$							109.8	

International Journal of Pharmaceutical Sciences Review and Research

Vibrational band assignments

Since Furan molecule has C_{2V} symmetry point group, so it possesses 21 fundamental vibrations divided as $8A_1 + 3A_2$ + $3B_1 + 7B_2$. While the MF molecule has 30 fundamental vibrations, with point group C_s. The DMF molecule has 39 fundamental vibrations, belong to the C_{2V} equilibrium configuration. All vibrations for the studied molecules appeared in infrared and Raman spectra, except the A₂ species which presented in Raman only. The computed vibrational frequencies results with the complete analyzing for furan and its derivatives were presented in Tables 2-4.

CH vibrations

The calculated vibrational frequency results for F molecule and its derivatives indicated that the spectra of F molecule had two CH symmetric stretching located at 3241, and 3217 cm⁻¹, plus two CH asymmetric stretching vibrations presented at 3233, and 3207 cm⁻¹. The MF molecule showed three stretching vibrations, one of them C-H symmetric, and the others CH asymmetric stretching

vibrations occurred at 3276, and 3249, 3239 cm⁻¹ respectively. The spectra of the DMF molecule illustrated only two C-H symmetric and asymmetric vibrations (v_1 , v_2) at 3247, 3115 cm⁻¹, Table 4. It's well known that the CH vibrations of aromatic and hetero-aromatic structure usually appear within the region of 3000-3100 cm⁻¹ (¹⁴).

The F molecule spectra had two pure CH in-plane modes presented at 1008, 1298 cm⁻¹, with four pure CH out-ofplane vibrations located at 908, 711, 869, and 752 cm⁻¹, Table 1. The spectra of the MF molecule showed three modes v_{24} - v_{26} assigned as pure CH out-of-plane motion indicated at 887, 816, and 736 cm⁻¹, Table 3. The DMF demonstrated only two pure CH out-of-plane modes at 851, and 800 cm⁻¹, Table 4.

Methyl group vibrations

The 2-Methylfuran molecule gave one C-H₂ asymmetric vibrations at 3083 cm⁻¹. But the 2,5-Dimethylfuran spectra produced two degenerate C-H₂ asymmetric vibrations v_{14} , v_{21} appeared at 3073 cm⁻¹ ⁽¹⁵⁾.

		This work			Other wor	k ¹³	
NO.	Sym.	Freq.(cm ⁻¹)	IR intensity (km mol ⁻¹)	Raman activity (A° ⁴ amu ⁻¹)	Theoretical Freq. (cm ⁻¹)	Exp. Freq. (cm ⁻¹)	Assignment
ν_1	A1	3241	000.29	00.29	3278	3169	v_{s} CH $_{+}$ ring breath
ν_2		3217	000.84	03.99	3251	3140	$\nu_{\rm s}{\rm CH}$
ν_3		1493	014.69	36.43	1509	1491	ν_{s} C=C + β CH
ν_4		1414	008.16	23.20	1410	1385	ν_{s} C-C ₊ β CH
ν_5		1148	000.33	25.42	1164	1140	ν_{s} C-C $_{+}$ β CH
ν_{6}		1070	008.44	05.52	1089	1067	ν_{s} C -C $_{+}$ β CH
ν_7		1008	044.43	02.21	1013	0995	βСН
ν_8		0891	015.27	00.91	0884	0870	$\nu_{s}COC_{+}\beta CH$
ν_9	A ₂	0908	000.00	00.48	0871	0864	үСН
ν_{10}		0711	000.00	00.09	0730	0722	үСН
ν_{11}		0617	000.00	00.03	0614	0600	γCH +ring puck
v_{12}	B ₁	0869	000.57	00.51	0845	0838	үСН
v_{13}		0752	106.54	00.92	0758	0745	үСН
ν_{14}		0627	016.60	01.67	0622	0603	γCH (wing)
ν_{15}	B ₂	3233	000.84	03.90	3271	3161	$ u_{as}CH$
$ u_{16} $		3207	003.27	94.22	3240	3130	$ u_{as}CH$
v_{17}		1575	000.13	00.24	1584	1558	v_{as} C=C+ β CH
ν_{18}		1298	003.27	00.84	1290	1267	βСН
ν_{19}		1160	011.68	02.01	1203	1181	$v_{as}COC + \beta CH$
ν_{20}		1063	000.13	04.01	1060	1043	$v_{as}COC + \beta CH$
ν_{21}		0889	000.77	02.54	0890	0873	ν_{s} CCC+ β CH

Table 2: The calculated fundamenta	l vibrations of E compared	d with other theoretical ar	nd observation data

The calculated vibrational spectra of the MF molecule had two CH₃ asymmetric and symmetric stretching vibrations v_4 , v_5 at (3119, and 3036 cm⁻¹).

Available online at www.globalresearchonline.net © Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

Table 3: The calculatedfundamental vibrations of MF with the	he complete assignment for	the fundamental vibrations of
MF molecule.		

NO	Sym.	Freq. (cm ⁻¹)	IR intensity (km mol ⁻¹)	Raman activity (A ^{°4} amu ⁻¹)	Assignment
ν_1	Α'	3276	00.3600	249.05	ν _s CH
ν_2		3249	01.2100	143.02	$ u_{\rm as}{\sf CH}$
ν_{3}		3239	07.3800	165.05	$ u_{\rm as}{\sf CH}$
ν_4		3119	13.6800	132.97	$\nu_{as} CH_3$
ν_{5}		3036	33.3400	482.20	ν_{s} CH $_{3}$
ν_{6}		1625	18.9500	033.54	ring def. ($\nu_{as} C = C$)
ν_7		1529	39.0400	211.07	CH ₃ bend + ring def. (ν_s C= C)
ν_8		1485	13.3300	006.82	CH_3 bend
ν ₉		1417	03.4200	029.42	β CH + CH ₃ umbrella
ν_{10}		1406	07.1900	014.58	ring def. (ν_s C-C) + β CH + CH ₃ bend
ν_{11}		1262	16.5900	006.68	clock and anticlock wise
ν_{12}		1234	21.1200	012.69	ring def. (ν C-C + ν CO) + CH ₃ bend
ν_{13}		1162	16.5900	011.59	ring def.
ν_{14}		1098	12.5700	029.34	ν CO
ν_{15}		1033	29.7100	003.24	ν C-C + β CH
ν_{16}		0992	05.6800	002.19	CH_3 bend + β CH
ν_{17}		0930	40.6600	009.75	ring def. + β CH+ CH ₃ bend
ν_{18}		0902	04.4500	007.47	ring def. + β CH
ν_{18}		0902	04.4500	007.47	ring def. + β CH
ν_{19}		0657	00.4300	012.72	β C=C-O + ν C-C(H ₃)
ν_{20}		0349	04.3800	001.47	CH_3 bend + clock wise (ring + CH)
ν_{21}	Α''	3083	17.2200	175.60	ν_{as} CH ₂
ν_{22}		1470	10.3400	016.06	CH_3 bend
ν_{23}		1058	02.2600	000.73	CH_3 bend
ν_{24}		0887	00.1300	002.11	ү СН
ν_{25}		0860	31.4800	002.70	ү СН
ν_{26}		0763	83.2800	001.81	ү СН
ν_{27}		0643	02.6500	003.31	Ring def.+ γ CH+ CH ₃ bend
ν_{28}		0618	12.6300	000.89	γ CH + ring def.
ν_{29}		0247	09.1500	003.58	γ ring + CH ₃ bend
ν_{30}		-0140	00.0002	000.63	CH₃ Fan

But the spectra of the DMF molecule presented three fundamental vibrations of CH_3 symmetric and asymmetric stretching motions v_3 , and v_2 , v_{29} respectively.

Ring vibrations

The ring of furan in the three studied molecules had several C-C symmetric and asymmetric stretching vibrations, ranged between 1414- 1033 cm⁻¹. These vibrations decreased in the following order F, MF, DMF, while the C=C stretching vibrations showing opposite order decreasing (DMF, MF, F), Tables 2-4.

Electronic absorption spectra

Table 5, presented the results of the UV-Visible spectra, containing the molecular orbital energies difference $\Delta E = E_{f^-} E_i$ (corresponds to the vertical excitation according to the Frank–Condon principle ¹⁶). Also the maximum absorption wavelength (λ_{max}), and oscillator strength (f) based on the optimized geometry in ethanol, and gas phase with their major contributions. The calculations revealed that λ_{max} for the three compounds belonged to transition H->L (with a major contribution of 70%), increased in following sequence F, MF, DMF. A *bathochromic* shift with *hyperchromism* for the UV band were noticed during the transferring from the gas to solution (in polar solvent ethanol) phase ⁽¹⁷⁾].

NO.	Sym.	Freq. (cm ⁻¹)	IR intensity (km mol ⁻¹)	Raman activity (A^{4} amu ⁻¹)	Assignment
ν ₁	A ₁	3247	02.00	123.29	ν _s CH
ν ₁	7.1 	3115	13.69	122.02	$\nu_{\rm as}$ CH ₃
ν ₃		3030	04.77	532.84	$\nu_{\rm s}$ CH ₃
ν ₄		1580	27.07	156.00	ring def. (ν_s C= C)
ν ₅		1501	12.58	012.72	CH ₃ bend
ν ₆		1422	00.24	019.90	CH ₃ bend
ν ₇		1388	04.36	010.39	CH ₃ bend + ring def. (ν_s C-C) + β CH
ν ₈		1239	07.91	007.95	CH_3 bend + ring def. (v_s C-C)
ν ₉		1048	19.30	008.01	β CH
ν ₁₀		1007	00.08	006.21	Ring breath + β CH
ν ₁₁		0952	21.33	006.12	COC bend + CH ₃ bend
ν ₁₂		0616	00.89	010.22	COC bend + CH_3 bend
ν ₁₃		0265	01.72	001.53	CH ₃ bend
ν ₁₄	A ₂	3073	08.00	201.92	v_{as} CH ₂
ν ₁₅		1481	00.00	008.27	CH ₃ bend
V 16		1052	00.00	000.24	CH ₃ bend
ν ₁₇		0851	00.00	002.17	γCH
V 18		0630	00.00	000.92	Ring puck + CH ₃ bend
ν ₁₉		0277	00.00	001.69	CH_3 bend + γ ring + γ CH
ν_{20}		-0145	00.00	000.15	CH₃ Fan
ν_{21}	B ₁	3073	29.84	000.30	$ u_{as} CH_2$
ν_{22}		1483	12.44	000.51	CH₃ bend
ν_{23}		1065	02.50	000.12	CH₃ bend
ν_{24}		0800	46.31	000.04	ү СН
ν_{25}		0657	00.22	002.00	Ring puck + CH ₃ bend
$ u_{26}$		0196	08.55	000.39	γ ring
ν_{27}		0143	00.02	000.58	CH_3 bend
ν_{28}	B ₂	3233	08.91	072.27	$\nu_{\rm as}$ CH
ν_{29}		3115	02.93	003.27	$\nu_{as} CH_3$
$ u_{30}$		3030	63.23	008.37	$\nu_{as} CH_3$
ν_{31}		1647	09.31	003.79	ring def. (ν_{as} C= C) + β CH
ν_{32}		1493	00.36	003.49	CH_3 bend
ν_{33}		1416	00.11	008.01	CH ₃ umbrella
ν_{34}		1265	34.14	000.00	ring def. (ν_{as} CO C) + β CH + CH ₃ bend
ν_{35}		1232	00.26	002.73	βСН
$ u_{36}$		1003	00.74	000.08	β CH + CH ₃ bend
ν_{37}		0984	02.93	000.00	ring def. + CH₃ bend
ν_{38}		0700	00.05	000.75	ring def. + β CH + CH ₃ bend
ν_{39}		0414	02.62	000.95	clock wise + CH ₃ bend

Table 4: The calcu	lated fundamental	vibrations of	f DMF
--------------------	-------------------	---------------	-------

Molecular Orbital

The frontier molecular orbital's ($\Delta E = E_{LUMO} - E_{HOMO}$) specifies the molecule chemical stability, reactivity, optical polarizability, and chemical softness-hardness. The lower the value of ΔE indicates that these molecule is more

reactive and less stable ^(18, 19). The energies results with shapes of these orbitals were demonstrated in figure 2. The calculated ΔE for all molecules in gas phase were increased in the following order DMF, MF, F, and inversely proportional with λ_{max} (as expected).

Available online at www.globalresearchonline.net © Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited. **Table 5:** The absorption wavelength, energies, and oscillator strengths of the F, MF and DMF compounds using the TD-DFT/ B3LYP/ CC-PVTZ (2d, 2p) method.

Compound			Gas				Ethanol	
Compound	λ(nm)	E(eV)	f	Major contribution	λ(nm)	E(eV)	f	Major contribution
	196.64	6.3052	0.1524	H -→L (70%)	199.53	6.2139	0.1835	H-→L (70%)
F	182.25	6.8030	0.0000	H-1-→L (52%) H-→ L+2 (48%)	181.87	6.8172	0.0000	H-1-→ L (52%) H-→L+2 (48%)
	179.26	6.9164	0.0000	H -→ L+1(70%)	173.55	7.1440	0.0000	H -→ L+1(70%)
	203.76	6.0850	0.2255	H -→ L (70%)	206.61	6.0008	0.2643	H -→ L (70%)
MF	194.53	6.3737	0.0009	H -→ L+1(70%)	188.80	6.5671	0.0010	H -→ L+1(70%)
IVII	187.35	6.6179	0.0063	H-1-→L (45%) H-→ L+2 (55%)	186.67	6.6419	0.0107	H-1-→L (44%) H-→L+2 (56%)
	210.06	5.9024	0.2976	H -→ L (70%)	212.60	5.8318	0.3443	H -→ L (70%)
DMF	205.52	6.0326	0.0000	H -→ L+1(70%)	200.39	6.1870	0.0000	H -→ L+1(70%)
DMF	196.84	6.2986	0.0006	H-→ L+2 (70%)	192.95	6.4258	0.0302	H-1-→L (35%) H-→L+2 (65%)

Hint: H= HOMO, L=LUMO, H-1= bonding MO, one level lower than HOMO, H-2 = represent two levels lower than HOMO, L+1=anti Bonding MO (one level higher than LUMO), L+2 = antibonding MO (two levels higher than LUMO).

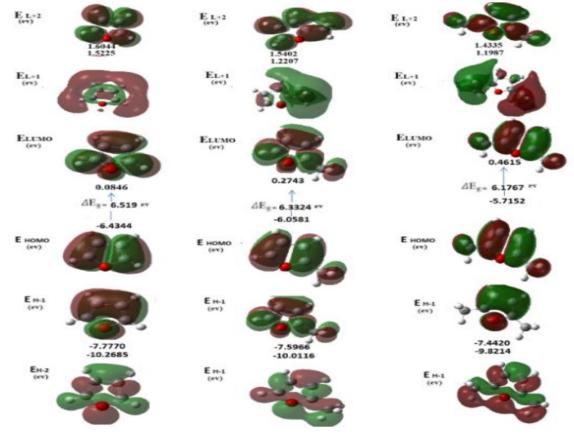


Figure 2: The energies and the compositions for some molecular orbital's of F, MF, and DMF compounds, in gas phase.

Molecular electrostatic potential (MEP)

The MEP usually illustrates the density of the charge for molecule, which affords useful information in predicting the sites for the attacks of electrophilic and nucleophilic reactions. The red, blue, green, and orange colors appear on molecular surface related to the electrostatic potential energy differences. Where the red indicates the high and the blue indicates less attractiveness 20 . Figure 3, showed the MEP maps for furan and its derivatives. The red was concentrated around the O atoms; this means that the region is higher negative. The blue color around the H atoms indicating that the region is more positive. Therefore O atom shows higher repulsion, and H higher attraction 21 .

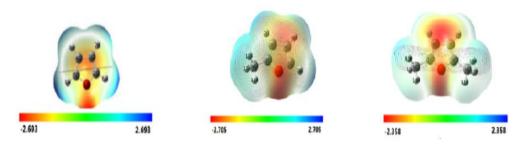


Figure 3: The MEP map for F, MF, and DMF molecules in gas phase.

NMR spectroscopy

The NMR analysis is usually used to identify the structure of molecules. The position of the NMR signals aid to realize the proton nature (aliphatic or aromatic) adjacent to attracting or releasing electron group, or the electronic environment. The calculated NMR results for furan and its derivatives, in gas phase, and solvent (dimethyl sulfoxide DMSO) were employed to express the chemical shifts δ (ppm) [where the tetramethylsilane (TMS) compound was used as a reference], Table 6. From the computed results it can be noticed that the chemical shifts for O > C > H nucleus. This difference is due to the high electronic cloud density surrounding the nucleus (because O has higher electronic negativity)²².

The effect of substitution CH_3 (electron donating group) at C_2 position in MF, and the two CH_3 groups at C_2 and C_5 positions in DMF molecules reveled:

1- The δ value of oxygen nucleus decreased in following manner F, MF, DMF.

2- In furan, the δ of C₂ and C₅ nucleus were equal 107.1 ppm due to the symmetry, and lower for C₂ in MF (99.9 ppm). A further decreasing was noticed at C₂, and C₅ nucleus for DMF molecules (98.5 ppm).

3- The proton of furan ring H₇ illustrated more shielding in MF than F molecule. Also the two protons H₇, and H₈ indicated the high shielding in DMF molecule. This related to the greater electron density around these protons.

Table 6: The calculated NMR chemical shifts in ppm for F, MF and DMF molecule in (gas phase and DMSO solvent).

F				MF		DMF		
Atom	tom Chemical shift (ppm)		Atom Chemical shift (ppm)		Atom	Chemical shift (ppm)		
	Gas phase	DMSO		Gas phase	DMSO		Gas phase	DMSO
O(1)	330.05	327.34	O(1)	276.51	276.51	O(1)	231.71	229.07
C(2)	107.10	108.07	C(2)	107.72	107.72	C(2)	098.49	099.25
C(3)	136.78	138.14	C(3)	125.49	125.49	C(3)	120.85	120.85
C(4)	136.78	138.14	C(4)	133.29	133.29	C(4)	120.85	120.85
C(5)	107.10	108.07	C(5)	099.93	099.93	C(5)	098.49	099.25
H(6)	002.75	002.74	C(6)	032.82	032.82	C(6)	032.92	033.18
H(7)	001.98	001.95	H(7)	003.60	003.60	H(7)	003.37	003.29
H(8)	001.98	001.95	H(8)	001.71	001.71	H(8)	003.37	003.29
H(9)	002.75	002.74	H(9)	002.62	002.63	C(9)	032.92	033.18
			H(10)	008.84	008.84	(10)H	008.95	009.02
			(11)H	007.51	007.51	H(11)	007.12	007.21
			H(12)	008.84	008.84	H(12)	008.95	009.02
						H(13)	008.95	009.02
						H(14)	007.12	007.21
						H(15)	008.95	009.02

CONCLUSIONS

Furan ring bond angle $C_2O_1C_5$ showed small decreasing according to the following sequence F, MF, DMF, due to the presence of CH₃ groups in C₂, and C₂, C₅ positions for MF, and DMF molecules respectively. The vibrational spectra demonstrated that the ring of furan in the three molecules had several C-C symmetric and asymmetric stretching vibrations. These vibrations decreased in the following manner F, MF, DMF, while the C=C stretching vibrations decreased in the opposite order DMF, MF, F.

The UV-Vis results revealed that the maximum absorption wavelength (λ_{max}) for the F and its derivatives belong to the H->L transition, increased in this sequence F, MF, DMF. During the transferring from the gas to solution

(polar solvent ethanol) phase, a bathochromic shift with hyperchromic showed a unique UV band for the three molecules, which means that the transition is $\pi \to \pi^*$ type. The energy difference between the frontier molecular orbitals $\Delta^{\text{TM}}E$ for all molecules in gas phase increased according to this order DMF, MF, F. The ΔE values were inversely proportional with the λ_{max} . The NMR data for the proton of furan ring H₇ illustrated more shielding in MF than F molecule. Also the two protons H₇, and H₈ demonstrated a high shielding in DMF molecule. This related to the biggest electron density surrounding these protons (the presence of CH₃ donating group).

REFERENCES

- 1. Ullrich CA, Time-dependent density-functional theory, concepts and applications, Oxford, NewYork, 2011.
- Cheng Z, Tan Y, Wei L, Xing L, Yang J, Zhang L, Leung DY, Experimental and kinetic modelling studies of furan pyrolysis: Fuel decomposition and aromatic ring formation, Fuel, 206, 2017, 239-247.DOI: 10.1021/acs.cgd.8b01234.
- McKillip WJ, Collin G, Höke H, Zeitsch KJ, Furan and derivatives, Ullmann's encycloped of industrial chemistry, 2000.
- Somers KP, Simmie JM, Metcalfe WK, Curran HJ, The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study, Physical Chemistry Chemical Physics., 16(11), 2014, 5349-5367. DOI: 10.1039/C3CP54915A.
- Sirjean B, Fournet R, Glaude PA, Battin-Leclerc F, Wang W, Oehlschlaeger MA, Shock tube and chemical kinetic modelling study of the oxidation of 2, 5-dimethylfuran., J. Phys. Chem. A, 117(7), 2013, 1371-1392. DOI: 10.1021/jp308901q; PMID: 23327724.
- Ramachandran KI, Deepa G, Namboori K, Computational chemistry and molecular modelling, 4th ed., Springer, India, (2008).
- 7. Jensen F, Introduction to Computational Chemistry, 2nd ed., Wiley, 2006.
- O'Rourke C, Bowler DR, Linear scaling density matrix real time TDDFT: Propagator unitarity and matrix truncation, J. Chem. phys., 143(10), 2015, 102801(1-10). DOI: 10.1063/1.4919128.
- Cheeseman JR, Trucks GW, Keith TA, Frisch MJ, A Comparison of models for calculating nuclear magnetic resonance shielding tensors, J. Chem. Phys., 104, 1996, 5497-5509. DOI: 10.1063/1.471789.
- 10. Frisch MJ, Trucks GW, Schlegel HB et al, GAUSSIAN 09, revision A. 02, Gaussain Inc., Wallingford, CT, 2009.

- 11. Cramer CJ, Essentials of computational chemistry: theories and models, John Wiley & Sons, 2013.
- Burcl R, Handy NC, Carter S, Vibrational spectra of furan, pyrrole, and thiophene from a density functional theory anharmonic force field, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(8), 2003, 1881-1893. DOI:10.1016/S1386-1425(02)00421-3
- El-Azhary AA, Suter HU, Comparison between optimized geometries and vibrational frequencies calculated by the DFT methods, J. of Phys. Chem, 100(37), 1996, 15056-15063. DOI: 10.1021/jp9606180
- Sumathi S, Viswanathan K, Ramesh S, FT-IR, FT-Raman and SERS Spectral Studies, HOMO- LUMO Analyses, Mulliken Population Analysis and Density Functional Theoretical Analysis of 1-Chloro 4-Fluorobenzene, IOSR-JAP, 8, 2016, 16-25. DOI: 10.9790/4861-08121625.
- 15. Socrates G., Infrared Characteristic Group Frequencies, Wiley, New York, 1980.
- 16. Atkins P., de Paula J, Physical chemistry, 9th ed., Oxford, New York (2010).
- 17. Silverstein MR, Bassler GC, Morrill TC, Spectrometric Identification of Organic Compounds, John Wiley, Chichester, 1991.
- Gunasekaran S, Balaji R A, Kumeresan S, Anand G, Srinivasan S, Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5- methoxytryptamine, Can. J. Anal. Sci. Spectrosc, 53, 2008, 149-160.
- Kosar B, Albayrak C, Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(ptolylimino) methyl] phenol, Spectro chim Acta A: Molecular and Biomolecular Spectroscopy, 78(1), 2011, 160-167.DOI: 10.1016/j.saa.2010.09.016; PMID: 20940104.
- Santamaria R, Cocho G, Corona L, González E, Molecular electrostatic potentials and Mulliken charge populations of DNA mini-sequences., Chemical physics 227(3), 1998.DOI: 10.1016/S0301-0104(97)00320-0.
- Drissi M, Benhalima N, Megrouss Y, Rachida R, Chouaih A, Hamzaoui F, Theoretical and experimental electrostatic potential around the m-nitrophenol molecule., Molecules, 20(3), 2015, 4042-4054. DOI: 10.3390/molecules 20034042; PMID: 25741898.
- 22. Sharma YR, Elementary Organic Spectroscopy; Principle and Chemical Applications, 4th ed., S. CHAND, NEW DELHI, 2007.

Source of Support: Nil, Conflict of Interest: None.

