Review Article

Traditional Approach for the Management of Urolithiasis

S.K Syed Hussain*¹, Naaz Nazmeen¹, Dr. Shaik Mohammed Aliuddin² ¹Department of Pharmacology, Sultan-Ul-Uloom College of Pharmacy, Hyderabad-500 034, Telangana, India. ²Board of Indian Medicine, Hyderabad, A.P., India. *Corresponding author's E-mail: sksyednt@gmail.com

Received: 17-11-2018; Revised: 20-12-2018; Accepted: 02-01-2019.

ABSTRACT

Kidney stone is a general problem with increased reoccurrence, spread all over the world. It is the third most common disorder after prostate disease and infection of urinary tract. It is considered as the systemic disorder associated with many health conditions. An imbalance of urinary inhibitors and urinary promoters involved in crystallization are considered as the governing factors of biomineralization or kidney stone formation. Urine mainly contains crystalloids such as ammonium, calcium carbonate, cysteine, magnesium, potassium, urea, uric acid etc and colloids such as mucin, chondrotin etc. The mechanism involved in the stone formation and the factors effecting were determined. The plants used in the treatment of Urolithiasis belonging to different families have been mentioned. The effect of hormones in the kidney stone was elaborated. Herbal therapies have found to be more effective with minimal associated after effects. Some of the plants with antiurolithiatic property and the part of the plant being used were complied.

Keywords: Urolithiasis, Kidney stone, Biomineralization, Calcium oxalate stone, Crystallization.

INTRODUCTION

rolithiasis can be defined as the mechanism of development of stone (calculi) in urinary system. Stone can be formed in any part of the urinary system like kidney, bladder and ureter and the associated diseases are called as nephrolithiasis, Cystolithiasis and Uterolithiasis respectively.¹ Disorder of kidney stones leads to considerable health and financial burden. Kidney stone disease is linked with other disorders like fractures, hypertension, metabolic disease, chronic kidney disorder, high risk of coronary artery disease (CAD) and diabetes (Insulin dependent diabetes), so it is referred as systemic disorder.² Urolithiasis result in hematuria (blood in urine), dysuria (painful urination), pyuria (pus in urine), renal colic and oliguria (reduced urine excretion) which are caused due to blockade of urethra. The consequence of this blockade is condensation of phosphate and oxalate salts which are less soluble and insoluble salts.³ India is the country where naturopathy has been considered as the potential therapy since Vedic times 1500-1000 B.C.⁴ Kidney stone formation in such is a general problem with increased reoccurrence which is spread all over the world.5

PREVALENCE

Urolithiasis affects, 2% of population (both the genders) globally and it is the third most common disorder,⁵ but its recurrence rate is being high in males about 70-80% and low in females about 47-60%.¹ The race and cultural differences also plays a great role in occurrence of Nephrolithiasis as Caucasian males are more prone to it.⁶ Prevalence of Nephrolithiasis increase after the age of 20.⁷For the treatment, prevention and management of

urinary stone various medicinal plants enlisted below have been used that belongs to different families.

Table 1: Plants belonging to following families are used in treatment of Urolithiasis⁸

S. NO	Family	No of plants used as antiurolithiatic in the specific families
1	Amaranthaceae	15
2	Anacardiaceae	10
3	Acanthaceae	15
4	Amaryllidaceae	9
5	Aspleniaceae	5
6	Arecaceae	7
7	Asparagaceae	9
8	Apocynaceae	9
9	Crassulaceae	5
10	Caesalpiniaceae	7
11	Cucurbitaceae	18
12	Capparidaceae	5
13	Chenopodiaceae	6
14	Cupressaceae	12
15	Caryopyllaceae	11
16	Euphorbiaceae	20
17	Ericaceae	8
18	Equisetaceae	8

Available online at www.globalresearchonline.net

PATHOPHYSIOLOGY

Pathogenesis of renal stone can also be termed as biomineralization. It is basically the biological process that engage the physiochemical shifts, alternation in the walls of collecting system and concentration of urine in kidney.⁹ Urine mainly contains crystalloids such as ammonium, calcium carbonate, cysteine, magnesium, potassium, urea, uric acid etc and colloids such as mucin, chondrotin etc. Any change in the concentration of these constituents leads to precipitation and adhesion of the free ions. Urinary infection, altered muco-protein concentration and pH leads to physiochemical changes. Urinary stasis, theory of Randall's plaque and deficiency of vitamin A leads to the alternations in collecting systems walls.¹⁰

Crystallization is an important phenomenon of stone formation depending on the thermodynamics, nucleation and the rate of nucleation. An imbalance of urinary inhibitors and urinary promoters involved in crystallization are considered as the governing factors of biomineralization. This imbalance leads to oxidative stress followed by injury and rupture of cells leading to nucleation. Stone formation occurs in biological events such as the crystal nucleation, crystal growth, crystal aggregation and crystal retention.⁹

Depending upon the type of stones and urine constituents, the sequence of events varies. Biomineralization is also caused due to ulceration followed by pus formation and crystallization.¹⁰

PATHOLOGY

Urolithiasis i.e. formation of stones in urinary system generally result due to the following

- Infection of urinary tract by microbes
- Diet rich in calcium and oxalate
- Deficiency of vitamins A and D
- Decrease urinary outflow
- Metabolic disorders such as
 - Gout

•

- Hyperthyroidism
- Intestinal dysfunction
- Cystinuria¹¹
- Lack of balance between the promoters of stone formation and inhibitors may results in Nephrolithiasis.¹²
- Hormones for stone formation

Hormones play a vital role in enhancing and preventing the formation of stone.

 Table 2: Effect of hormones on Urolithiasis¹³

Hormone	Location	Effect
Testosterone	Hormone present in males	Enhances the formation of stone
Estrogen	Hormone present in females	Prevents the formation of stone by elevating the level of citrate in urine and maintaining the basic nature of urine

S.No	Botanical name	Family	Part used	Mechanism of action
1.	Achyranthus aspera L.	Amaranthaceae	Leaves ¹⁴	Prevents damage of renal epithelial cells, diuretic, Dissolves or prevents the formation of stone ¹⁵
2.	Aerva lanata L.	Amaranthaceae	Whole plant ¹⁶	Litholytic ¹⁷ lithotriptic ¹⁸
3.	Achyranthus indica Linn.	Amaranthaceae	Roots	Dissolves or prevents the formation of stone ¹⁹
4.	Amaranthus caudatus L.	Amaranthaceae	Leaves ¹⁹	Diuretic, litholytic and antioxidant property ¹⁷
5.	Amaranthus spinosus L.	Amaranthaceae	Roots ¹⁹	-
6.	<i>Aerva javanica</i> Burm.	Amaranthaceae	Roots	Diuretic ¹⁷ , Lithotriptic ²⁰
7.	Alternathera brasiliana L.	Amaranthaceae	Leaves	Diuretic and litholytic ¹⁷
8.	Amaranthus blitum L.	Amaranthaceae	Leaves ²¹	-
9.	Amaranthus viridis L.	Amaranthaceae	Roots	Litholytic ¹⁷
10.	Beta vulgaris L.	Amaranthaceae	Leaves and Rhizome	Dissolves or prevents the formation of stone ²²
11.	Digera muricata L.	Amaranthaceae	Leaves	Dissolves or prevents the formation of stone ²³
12.	Gomphrena celosioides Mart.	Amaranthaceae	Roots	Dissolves or prevents the formation of stone ²⁴
13.	Nothosaerva brachiata L.	Amaranthaceae	Roots	Diuretic, litholytic, lithotriptic ¹⁷ Dissolves or prevents the formation of stone ²⁵
14.	Helianthus annuus Linn.	Asteraceae	Leaves ²⁶	Used in treating kidney and urinary

Table 3: List of plants showing Antiurolithiatic activity

International Journal of Pharmaceutical Sciences Review and Research

Available online at www.globalresearchonline.net

				27
				problems ²⁷
15.	Helichrysum plicatum DC.	Asteraceae	Flowers ²⁸	-
16.	Ageratum conzoides L.	Asteraceae	Whole plant ²⁶	-
17.	Enhydra fluctuans Lour.	Asteraceae	Ariel parts	Dissolves or prevents the formation of stone ³⁰
18.	Eupatorium birmanicum DC.	Asteraceae	Leaves	Dissolves or prevents the formation of stone ²⁸
19.	Myriogyne minuta Less.	Asteraceae	Ariel parts	Used in treating stone in urinary tract when given along with equal ratio of sugarcane juice ²⁷
20.	Tagetes erecta Linn.	Asteraceae	Leaves	Used in treatment of kidney related diseases
21.	Wedelia chinensis	Asteraceae	Whole plant	Used in treating Urolithiasis
22.	Xanthium strumarium Linn.	Asteraceae	Roots	Used in the treatment of kidney stones and cancer ²⁷
23.	Acanthus ilicifolius L.	Acanthaceae	Whole plant	Diuretic ³⁰
24.	Barleria prionitis L.	Acanthaceae	Roots	Diuretic
25.	Ecbolium viride Forsk.	Acanthaceae	Leaves and roots	Diuretic
26.	Hygrophila auriculata Schum.	Acanthaceae	Roots	Diuretic ¹⁷
27.	<i>Lepidagathis prostrata</i> Dalzell.	Acanthaceae	Whole plant	Dissolves or prevents the formation of stone ³¹
28.	Thunbergia alata Thnal.	Acanthaceae	Leaves	Lithotriptic ²³
29.	Capsella bursapastoris L.	Brassicaceae	Entire herb 32	-
30.	Barbarea vulgaris R. Br.	Brassicaceae	Roots ³² , leaves ³³	-
31.	Cardamine hirsute L.	Brassicaceae	Whole plant	Diuretic ³⁴
32.	Ananas comosus L.	Bromeliaceae	Ripe fruit	Used in the treatment of asthma, Urolithiasis and bronchitis ²⁷
33.	Berberis aristata DC.	Berberidaceae	Leaves	Used for treating kidney problems and infection of urinary tract ²⁷
34.	Bauhinia acuminata L.	Caesalpiniaceae	Bark/Leaves	Lithotriptic ³⁵
35.	Cassia fistula L.	Caesalpiniaceae	Fruit/stem	Litholytic
36.	Hardwickia binata Roxb.	Caesalpiniaceae	Balsam	Diuretic
37.	Herniaria glabra L.	Caryophyllaceae	Ariel parts	Lithotriptic ¹⁷
38.	Herniaria hirsuta L.	Caryophyllaceae	Whole plant	Dissolves or prevents the formation of stone ²³
39.	Paronychia argentea Lam.	Caryophyllaceae	Whole plant	Litholytic
40.	Spergularia rubra L.	Caryophyllaceae	Leaves	Diuretic, Lithotriptic ¹⁷
41.	Benincasa hispida Thumb.	Cucurbitaceae	Seeds ³⁶	Dissolves or prevents the formation of stone ³⁷
42.	Cucumis sativus L.	Cucurbitaceae	Leaves ³²	Lithotryptic and litholytic ^{17, 35}
43.	Momordica charantia Linn.	Cucurbitaceae	Fruits ³⁸	Antiurolithiatic ²² and lithotryptic ³⁹
44.	<i>Melothria purpusillsa</i> Blume.	Cucurbitaceae	Whole part of plant	Lithotryptic ³⁵
45.	Curcuma Angustifolia Roxb.	Cucurbitaceae	Whole plant	Used for treating kidney stones infection and jaundice ⁴¹
46.	Citrullus colocynthis L.	Cucurbitaceae	Fruits	Antiurolithiatic ²²
47.	Homonoia riparia Lour.	Euphorbiaceae	Root ⁴²	Diuretic, antioxidant ²³ and lithotryptic ¹⁷
49.	Acalypha indica Linn.	Euphorbiaceae	Whole plant ⁴³	Antiurolithiatic, anti-inflammatory, diuretic, analgesic and antioxidant ¹⁷
50.	Bridelia crenulata Roxb.	Euphorbiaceae	Stem bark ⁴⁴	-
51.	Emblica officinalis Geartn.	Euphorbiaceae	Fruit ²⁹	Lithotriptic ³⁵
52.	Euphorbia hirta Linn.	Euphorbiaceae	Whole ⁴⁵	Antiurolithiatic, anti-inflammatorydiuretic, analgesic and antioxidant ¹⁷
53.	Mallotus philippensis	Euphorbiaceae	Bark	Used to treat stone formed in urinary tract ²⁷

54.	Phyllanthus urinaria Linn.	Euphorbiaceae	Whole plant	Used in urinary diseases ⁴⁶
55.	Mercurialis annus L.	Euphorbiaceae	Leaves	Diuretic ⁴⁷
56.	Sapium sebiferum Linn.	Euphorbiaceae	Leaves	Diuretic ¹⁷
57.	Sesbania grandiflora L.	Fabaceae	Leaf juice ⁴⁸	-
58.	Tamarindus indicus Linn.	Fabaceae	Fruit pulp ⁴⁹	Inhibits crystallization of stone
59.	Macrotyloma uniflorum Lam.	Fabaceae	Seed ⁵⁰	-
60.	Copaifera langsdorffii	Fabaceae	Leaves	Prevent growth of crystal and inhibits the formation of crystal ⁵¹
61.	Alhagi mannifera Desv L.	Fabaceae	Roots ³²	_
62.	Didymocarpus pedicellata Roxb.	Gesneriaceae	Leaves ⁴⁴	-
63.	Ammannia baccifera Linn.	Lythraceae	Leaves ⁵²	-
64.	Lawsonis inermis Linn.	Lythraceae	Leaves ⁵³	-
65.	Rotala baccifera Linn.	Lythraceae	Whole plant	Used in treating urinary trouble
66.	Abrus precatorius Linn.	Malvaceae	Leaves	Aqueous extract of this plant is used as antiurolithiatic
67.	Abutilon indicum Linn.	Malvaceae	Whole plant	Used in treating urinary problems
68.	Hibiscus sabdariffa Linn.	Malvaceae	Leaves	Used in treating problems associated to kidney stone
69.	Indigofera tinctoria Linn.	Papillionaceae	Roots	Used in treating urinary problems ²⁷
70.	Fragaria indica F.	Rosaceae	vegetative part	Dissolves or prevents the formation of stone 40
71.	<i>Docynia Indica</i> (Colebr) Decne.	Rosaceae	Fruit	Used for treating urinary troubles ⁴⁵
72.	Bergenia Ciliata Wall.	Saxifragaceae	Rhizomes ⁵⁴	-
73.	<i>Solanum nigrum</i> Linn.	Solanaceae	Seeds	Used in treating kidney stones ²⁷
74.	Saccharum officinarum Linn.	Poaceae	Stem	Used for treating kidney and liver infections and purifies blood ⁵⁵
75.	Hedychium coronarium koening.	Zingiberaceae	Rhizome	Used for problems related to kidney ²⁷

CONCLUSION

Kidney stones are prevalent in different communities in India which also forms an underlying cause for the development of many diseases. The rate of reoccurrence of Urolithiasis is high of the patients that have been treated with the synthetic drugs. These drugs provoke many side effects causing distress to the patients. Therefore, the herbal therapies of these drugs that have been studied showing anti-urolithiatic activity have been compiled, as the alternative method of treatment as far to mankind have been by far more useful, economic and providing lesser side effects.

REFERENCES

1. Mikawlrawng K, Kumar S, Vandana R, Current scenario of urolithiasis and the use of medicinal plants as antiurolithiatic agents in Manipur (North East India): a review, International Journal of Herbal Medicine, 2(1), 2014, 1-2.

- Sakhaee K, Maalouf NM, Sinnott B, Kidney stones, pathogenesis, diagnosis, and management, The Journal of Clinical Endocrinology & Metabolism, 97(6), 2012, 1847-60.
- 3. Sharma G and Lamichhane G, A review of plant based medicine in treatment of Urolithiatic disorder, The Pharma Innovation Journal, 6(10), 2017, 8-12.
- 4. Hussain SKS, Shamsia MU and Aliuddin SM, Traditional Approach to the Treatment of Parkinson's Disease, World journal of pharmaceutical research, 7(18), 2018, 1-12.
- Sayana SB, Khanwelkar CC, Nimmagadda VR, Chhavan VR, Ramesh BH, Kumar N, Evaluation of Antiurolithiatic Activity of Alcoholic Extract of Roots of *Cissampelos Pareira* in Albino rats, Journal of clinical and diagnostic research, 8(7), 2014, HC01.
- Lieske JC, De La Vega LP, Slezak JM, Bergstralh EJ, Leibson CL, Ho KL, Gettman MT, Renal stone epidemiology in Rochester, Minnesota: an update, Kidney international, 69(4), 2006, 760-764.

Available online at www.globalresearchonline.net

- 7. Hiatt RA, Dales LG, Friedman GD, Hunkeler EM, Frequency of Urolithiasis in a prepaid medical care program, American Journal Epidemiology, 115(2), 1982, 255-265.
- Ahmed S and Hasan MM, Antiurolithiatic plants of 8 Acanthaceae. Amaranthaceae. Amaryllidaceae, Anacardiaceae, Apocynaceae, Arecaceae, Asparagaceae, Aspleniaceae, Caesalpiniaceae, Capparidaceae, Caryopyllaceae, Chenopodiaceae, Cucurbitaceae, Cupressaceae, Ericaceae, Equisetaceae and Euphorbiaceae, World Journal Pharmacy an d Pharmaceutical Sciences, 6(8), 2017, 156-182.
- 9. Alelign T, Petros B, Kidney stone disease: An Update on Current Concept, Advances in Urology, 2018, 2018, 1-12.
- 10. Hussain IM, Ahmed G, Jahan N, Adiba M, Pathophysiology and Treatment of Urolithiasis in Unani Medicine, Indian Journal of History of Science, 51(1), 2016, 217-26.
- 11. Mekap SK, Mishra S, Sahoo S and Panda PK, Antiurolithiatic activity of *Crataeva magna* Lour Bark. Indian Journal of Natural Products and Resources, 1(2), 2011, 28-33.
- 12. Michell AR, Urolithiaisis- historical, comparative and pathophysiological aspects: a review, Journal of the Royal Society of Medicine, 82, 1989, 669.
- 13. Shirfule AL, Racharla V, Qadri SS, Khandare AL, Exploring antiurolithiatic effects of gokshuradi poly herbal ayurvedic formulation in ethylene-glycol induced urolithiatic rats. Evidence-Based Complementary and Alternative Medicine, 2013, 2012, 11.
- Aggarwal A, Tandon S, Singla SK, Tandon C, Reduction of oxalate-induced renal tubular epithelial (NRK-52E) cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of *Achyranthus aspera*. International Journal of Green Pharmacy, 4, 2010, 159-64.
- 15. Agarwal K, Varma R, *In-vitro* calcium oxalate crystallization inhibition by *Achyranthus aspera* L. and *Bryophullum pinnatum* Lam, British Journal Pharmaceutical Research, 5(2) 2015, 146-152.
- Soundararajan P, Mahesh R, Ramesh T, Begum VH. Effect of *Aerva lanata* on calcium oxalate Urolithiasis in rats. Indian Journal of Experimental Biology, 44(12), 2006, 981-986.
- 17. Ahmed S, Hasan MM, Mahmood ZA, Antiurolithiatic plants: Multidimensional pharmacology, Journal of Pharmacognsy and Phytochemistry, 5(2), 2016, 4-24.
- Pareta SK, Establishing the principle of herbal therapy for antiurolithiatic activity: A Review, Journal of Pharmacology and Toxicology, 6(3), 2011, 321-32.
- 19. Sharma N, Tanwer BS, Vijayvergia R, Study of medicinal plants in Aravali regions of Rajasthan for treatment of kidney stone and urinary tract troubles, International Journal of PharmTech Research, 3(1), 2011, 110-113.
- Padala K, Ragini V, Anti urolithiatic activity of extracts of Aerva javanica in rats, International Journal of Drug Development and Research, 6(4), 2014, 35-45.
- 21. Ahmed S, Hasan MM, Mahmood ZA, Antiurolithiatic plants in different countries and cultures, Journal of Pharmacognsy and Phytochemistry, 5(1), 2016, 102-115.

- Ahmed S, Hasan MM, Mahmood ZA, In vitro Urolithiasis models: An evaluation of prophylactic management against kidney stones, Journal of Pharmacognosy and Phytochemistry, 5(3), 2016, 28-35.
- 23. Joy JM, Prathyusha S, Mohanalakshmi S, Kumar AP, Kumar CK. Potent herbal wealth with litholytic activity: a review, International Journal of Innovative Drug Discovery, 2(2), 2012, 66-75.
- Goswami PK, Srivastava RS, Protective effect of root extract of *Gomphrena celosioides* in ethylene glycol induced urolithiatic rats, World Journal of Pharmacy and Pharmaceutical Sciences, 4(12), 2015, 1284-93.
- 25. Goswami PK, Srivastava RS, Protective effect of root extract of *Nothosaerva brachiata* Wight in ethylene glycol induced urolithiatic rats, International Research Journal of Pharmacy, 6(12), 2015, 808-12.
- 26. Khan MA, Pradhan D, Antiurolithic activity of *Ageratum conzoides* extract in rats, Pharmacologyonline, 3(1), 2011, 953-958.
- Lokendrajit N, Swapana N, Singh CD, Singh CB, Herbal folk medicines used for urinary and calculi/stone cases complaints in Manipur, International Journal of Environment and Biodiversity, 2(3), 2011, 1-5.
- Bayir Y, Halici Z, Keles MS, Colak S, Cakir A, Yusuf K, Akçay F, *Helichrysum plicatum* DC. subsp plicatum extract as a preventive agent in experimentally induced <u>U</u>rolithiasis model, Journal of Ethno pharmacology, 138(2), 2011, 408–414.
- 29. Ahmed MM, Singh KP, Traditional knowledge of kidney stones treatment by Muslim Maiba (herbalists) of Manipur, India, Notulae Scientia Biologicae, 3 (2), 2011, 12-5.
- Ahmed S, Hasan MM, Mahmood ZA, Urolithiasis management and treatment: Exploring historical vistas of Greco-arabic contribution, Journal of Pharmacognosy and Phytochemistry, 5(5), 2016, 167-178.
- Devkar RA, Chaudhary S, Adepu S, Xavier SK, Chandrashekar KS, Setty MM, Evaluation of antiurolithiatic and antioxidant potential of *Lepidagathis prostrata*: A Pashanbhed plant, Pharmaceutical biology, 54(7), 2016, 1237-45.
- 32. Choubey A, Parasar A, Choubey A, Iyer D, Pawar RS, Patil UK, Potential of medicinal plants in kidney, gall and urinary stones, International Journal Drug Development & Research, 2(2), 2010, 431-7.
- Garg A, Shukla A, Pandey P, Inhibitory effect of alcoholic extract of Tulsi (*Ocimum sanctum*) on calcium oxalate crystals: An study, Asian Journal of Pharmacy and Pharmacology, 3 (2), 2016, 77-80.
- Yumnam JY, Tripathi OP, Traditional knowledge of eating raw plants by the Meitei of Manipur as medicine/nutrient supplement in their diet, Indian Journal of Traditional knowledge, (1), 2012, 45-50.
- Chanchal DK, Niranjan P, Alok S, Kulshreshtha S, Dongray A, Dwivedi S, A brief review on medicinal plant and screening method of antilithiatic activity, International Journal of Pharmacognosy, 3(1), 2016, 1-9.

Available online at www.globalresearchonline.net

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

- 36. Patel R, Patel S, Shah J, Anti-urolithiatic activity of ethanolic extracts of seeds of *Benincasa hispida* (Thumb), Pharmacology online, 3, 2011, 586-591.
- 37. Atayoglu T, Buchholz N, Anti-stones formulae in traditional medicine, European Urology Today, 6, 2014.
- Shukla AK, Shukla S, Garg A, Garg S, A Review on Anti-Urolithiatic Activity Of Herbal Folk Plants, Asian Journal of Biomaterial Research, 3(2), 2017, 1-11.
- 39. Khan SW, Khatoon SU, Ethnobotanical studies on useful trees and shrubs of Haramosh and Bugrote valleys in Gilgit northern areas of Pakistan, Pakistan Journal Botany, 39(3), 2007, 699-710.
- 40. Singh RY, Ointa DCH, Singh SKA, Cheita D, Study on the Ethnomedical system of Manipur, International Journal of Pharmaceutical and Biological Archives, 3(3), 2012, 587-591.
- 41. Moe OW, Kidney stones: pathophysiology and medical management, the lancet, 367(9507), 2006, 333-44.
- 42. Chitme HR, Herbal Treatment for Urinary Stones, International Journal of Pharmaceutical Sciences and Research, 1, 2010, 25-31.
- 43. Sathya M, Kokilavani R, Teepa KA, Balakrishnan A, Biopotency of *Acalypha indica* Linn on membrane bound ATPases and marker enzymes Urolithic rats, Ancient science of life, 31(1), 2011, 3.
- 44. Singh AP, *Didymocarpus pedicellata*: The Lithotriptic Ethnomedicine, Ethnobotanical Leaflets, 11, 2007, 73-75.
- 45. Ningombam DS, Devi SP, Singh PK, Pinokiyo A, Thongam B, Documentation and assessment on knowledge of ethnomedicinal practitioners: A case study on local Meetei healers of Manipur, Journal of Pharmacy and Biological Sciences, 9(1), 2014, 2278-3008.
- 46. Meetei SY, Singh PK, Survey for medicinal plants of Thoubal district, Manipur, Flora Fauna, 13(2), 2007, 355-8.
- De Albuquerque UP, De Medeiros PM, De Almeida AL, Monteiro JM, Neto EM, De Melo JG, Dos Santos JP,

Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach, Journal of Ethno pharmacology, 114(3), 2007, 325-54.

- Doddola S, Pasupulati H, Koganti B, Prasad KV, Evaluation of *Sesbania grandiflora* for antiurolithiatic and antioxidant properties, Journal of Natural Medicines, 62(3), 2008, 300-7.
- Kumar S, Udupa AL, Sammodavardhana K, Rathnakar UP, Udupa S, Kodancha P, Antiurolithiatic Activity of Aqueous Extracts of Asparagus racemosus Willd., and Tamarindus Indica Linn. In Rats, Pharmacologyonline, 2, 2009, 625-30.
- 50. Chitme HR, Herbal Treatment for Urinary Stones, International Journal of Pharmaceutical Sciences and Research, 1, 2010, 25-31.
- Oliveira RB, Coelho EB, Rodrigues MR, Costa-Machado AR, Sousa JP, Berretta AA, Bastos JK, Effect of the *Copaifera langsdorffii* Desf leaf extract on the ethylene glycolinduced nephrolithiasis in rats, Evidence-Based Complementary and Alternative Medicine, 2013, 2013, 1-10.
- 52. Prasad KV, Bharathi K, Srinivasan KK, Evaluation of *Ammannia baccifera* Linn. For antiurolithiatic activity in albino rats, Indian Journal of Experimental Biology, 32 (5), 1994, 311-313.
- Kore K J, Shete R V, Jadhav P J, Kabra M P, Antiurolithiatic effects of hydroalcoholic extract of *lawsonia inermis* L leaves, International Journal of Universal Pharmacy and Life Sciences, 1(2), 2011, 81-95.
- 54. Saha S, Verma RJ, Bergenia ciliata extract prevents ethylene glycol induced histopathological changes in the kidney, Acta Poloniae Pharmaceutica in Drug Research, 68(5), 2011, 711-715.
- 55. Nanda Y, Nengununnem S, Rao NA, Ethnomedical plants of Thadou tribe of Manipur (India)-1, Pleione, 7(1), 2013, 138-145.

Source of Support: Nil, Conflict of Interest: None.

Available online at www.globalresearchonline.net