Various Ester Prodrugs of NSAIDs with Low Ulcerogenic Activity

Sudip Kumar Mandal¹ *, Kingshuk Pati¹, Anindya Bose², Buddhakshata Dey¹, Anjan De³, Sankhadip Bose³, Amartya De⁴
¹Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India.
²School of Pharmaceutical Sciences, Siksha O Anusandhan University, K8 Kalinga Nagar, Bhubaneswar, India.
³Nshm Knowledge Campus, Kolkata - Group of Institutions, BL Saha Road, Kolkata, India.
⁴BCDA College of Pharmacy & Technology, 78 Jessore Road, Barasat, Kolkata, India.
*Corresponding author’s E-mail: gotosudip79@gmail.com

Received: 15-11-2018; Revised: 20-12-2018; Accepted: 02-01-2019.

ABSTRACT
The design and synthesis of different prodrugs for nonsteroidal anti-inflammatory drugs (NSAIDs) have been given much attention by medicinal chemists in last decade, esters are one of them. This review will focus on NSAID ester prodrugs that have little to non-ulcerogenic activity. Majority of the efforts were given to design prodrugs of non-selective cyclooxygenase (COX) inhibitors to masking the free acidic groups in these molecules in order to protect the gastrointestinal tract (GIT) from local irritation. Commonly, a prodrug is synthesized from a parent drug by covalently linking it, with or without a carrier, to a pharmacologically inert pro-moiety, which can be cleaved enzymatically and/or chemically upon administration, releasing the parent drug.

Keywords: Esters, prodrugs, NSAIDs, low ulcerogenicity.

INTRODUCTION
The terms prodrug was first introduced by Adrien Albert in 1958¹. Prodrugs are “bioreversible derivatives of drug molecules that undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then exert the desired pharmacological effect”². NSAIDs are a group of compounds that are mainly used to reduce fever, pain and inflammation. NSAIDs exert their pharmacological action by inhibiting the synthesis of prostaglandins (PGs) by non-selectively blocking cyclooxygenases 1 and 2 (COX-1 and COX-2) or by selectively blocking COX-2. Inhibition of COX-1 is partly responsible for gastrointestinal ulcerogenicity, which are the most frequent side effects of NSAIDs. Like most other drugs, prodrugs are usually taken orally, and in most cases, their stability in simulated GIT conditions is tested. Adequate chemical stability in the GIT is desired or even required for prodrugs, especially if they are NSAID prodrugs³.

Esters Prodrugs of NSAIDs
A series of ester derivatives of indomethacin (I) were synthesized and evaluated as selective COX-2 inhibitors. Conversion of indomethacin into esters and amides provided a facile strategy for generating highly selective COX-2 inhibitors and eliminating the gastrointestinal side effects of the parent compound⁴,⁵.
Shi et al. synthesized a number of novel 2-(2-aryl morpholino-4-yl)ethyl 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-acetate hydrochlorides as NSAIDs and tested for their ulcerogenic activity. Compound 2-[2-(2,4-dichloro-5-fluorophenyl)morpholino-4-yl]ethyl 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-acetate hydrochloride (IV) reduced ulcerogenic effect many times than the parent drug indomethacin.

Babu et al. prepared the ester derivatives of indomethacin. In vivo anti-inflammatory studies were carried out using carrageenan rat paw edema method involving the carrageenan induced paw edema model and hot plate method. Most of the synthesized esters showed remarkable analgesic and anti-inflammatory activities. Interestingly, all of the compounds were found to be non-ulcerogenic under the test conditions.

Ahmed et al. designed and synthesized new chlorzoxazone ester prodrugs (VI) of some acidic NSAIDs and evaluated for their anti-inflammatory activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4 days.

Sharma et al. synthesized amino acid conjugates of suprofen (IX) and piroprofen (X) by coupling the carboxylic group (as acid chloride) of the drug (suprofen or piroprofen) and various amino acid methyl ester hydrochlorides. The amino acid conjugates were evaluated for analgesic, anti-inflammatory and ulcerogenic activities. The results suggest that the amino acid conjugates showed comparable analgesic and anti-inflammatory activities to the free drug with marked reduction in ulcerogenicity.

and in vivo ulcerogenic studies by ulcer index method for the panel of synthesized compounds. Compound V displayed moderate anti-inflammatory activity with no observable ulcerogenic effect when compared to indomethacin.
Mahdi et al. conjugated some NSAIDs with gabapentin via ester bonds using glycol spacers with the expectation of reducing gastric adverse effects and obtaining synergistic analgesic effects. Compounds I showed significant stability in buffer solutions with half lives ranging from about 8–25 h, while the underwent a reasonable plasma hydrolysis (49%–88%) in 2 h. These compounds are stable during their passage through the GIT until reaching the blood circulation.

Cai et al. thought that rhein and NSAIDs are potent anti-inflammatory drugs but their use has been limited by the high incidence of gastrointestinal erosions. They synthesized a series of rhein–NSAIDs prodrugs (XIII) containing anthaquinone. In the target moiety rhein was linked with NSAIDs through glycol ester. Hybrid rhein–NSAIDs prodrugs exhibited significant anti-inflammatory activity, moreover, the tested compounds were also found to possess less degree of ulcerogenic potential.

Lazaretto et al synthesized a new class of products (XVI) in which the phenol group of salicylic acid is linked to alkanoic moieties bearing nitroxy functions and studied for their polyvalent actions. The products were stable in acid and neutral media, while they were hydrolyzed in human serum. The products showed anti-inflammatory activities similar to aspirin when tested in the carrageenan-induced paw edema assay in the rat. They showed reduced or no gastrototoxicity in a lesion model in rats.

Abdellatif et al. synthesized a new group of hybrid nitric oxide-releasing anti-inflammatory ester prodrugs (XVII) wherein an O^\prime-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate, or 2-nitrooxyethyl, NO-donor moiety is attached directly to the carboxylic acid group of (E)-3-(4-methanesulfonlyphenyl)-2-(phenyl)acrylic acids. Hybrid ester anti-inflammatory/NO donor prodrugs offer a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic effects.

Fiorucci reported that naproxcinod (naproxen nitroxybutyl ester) (XVIII) is a nitric oxide derivative of the nonsteroidal anti-inflammatory drug naproxen and is currently in phase III clinical development for the treatment of inflammatory and nociceptive pain.

Milano et al. synthesized and evaluated the antinociceptive potential of few novel 5-trihalomethylated-4,5-dihydro-1H-pyrazole methyl ester compounds on chemical and thermal models of pain in mice. Compound XII was found to possess very little ulcerogenic potential.

Cena et al. synthesized new derivatives (XIV, XV) of NSAIDs in which aspirin is joined by an ester linkage to furoxan moieties with different ability to release NO and tested for NO-releasing, anti-inflammatory and ulcerogenic properties. The derivatives described present an anti-inflammatory trend; they are devoid of acute gastrototoxicity, principally due to their ester nature.

International Journal of Pharmaceutical Sciences Review and Research
Available online at www.globalresearchonline.net
© Copyright protected. Unauthorized republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
treatment of osteoarthritis. Preclinical studies have demonstrated that naproxcinod causes less gastric injury than naproxen, although it exerts similar anti-inflammatory and analgesic activity.

Huang et al. synthesized an unknown class of ethanesulfonylhydroxamic acid ester prodrugs (XVII) where the carboxylic acid group of the anti-inflammatory drugs indomethacin, (S)-naproxen and ibuprofen was covalently linked via a two-carbon ethyl spacer to a sulfonamidic acid moiety \(\text{CH}_2\text{CH}_2\text{SO}_2\text{NHOH} \) that releases NO and nitroxyl (HNO). (S)-Naproxen and ibuprofen ester prodrugs are more potent anti-inflammatory agents than their parent NSAID. Indomethacin ester prodrug, in contrast to indomethacin which is highly ulcerogenic, showed no visible stomach lesions [ulcer index (UI) = 0 for a 80 μmol/kg oral dose] while retaining potent anti-inflammatory activity, and unlike indomethacin which is an ulcerogenic selective COX-1 inhibitor, is a selective COX-2 inhibitor (COX-2 selectivity index = 184) devoid of ulcerogenicity that is attributed to its high COX-2 selectivity index and/or ability to release cytoprotective NO.

Different esters of (5,6-dimethoxy-3-oxo-2,3-dihydro-1H-inden-1-yl)acetic acid, (5-ethoxy-6-methoxy-3-oxo-2,3-dihydro-1H-inden-1-yl)acetic acid and (6-chloro-3-oxo-2,3-dihydro-1H-inden-1-yl)acetic acid (XX) were synthesized and were evaluated for their anti-inflammatory and analgesic activities, where aspirin was used as the standard. The ester derivatives of (5-ethoxy-6-methoxy-3-oxo-2,3-dihydro-1H-inden-1-yl)acetic acid showed highest activity among the three series, due to their higher lipophilicity. Few selected compounds were also screened for their antipyretic and ulcerogenic potential. The compounds showed no ulcer formation up to the tested dose level.

CONCLUSION

This review is based on literature of ester prodrugs of NSAIDs that protects gastric toxicity. It will develop the idea that a lot many researchers may be involved in developing safer NSAIDs. This literature would help the scientist to get the preliminary idea of the research done in the field of prodrugs as NSAIDs. This will help to generate the view that development of NSAIDs as prodrug is required due to the side effects they have. This paper would lead to generate the idea how the safer NSAIDs can be developed which may be fruitful for the society.

REFERENCES

Source of Support: Nil, Conflict of Interest: None.