INTRODUCTION

One of the unresolved problems in In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) is the poor implantation rates after the embryo transfer of normal looking embryos. This low implantation rate is related to intrinsic embryo abnormalities, defective uterine receptivity, in addition to hatching failure. Thick Zona Pellucida (ZP) is one of the main reasons that some blastocysts fail to hatch, and this leads to impaired implantation, which is correlated to basal FSH levels and preovulatory estradiol. During in vitro culture secondary zona hardening may also occur. Laser Assisted Hatching (LAH) is thought to enhance embryo implantation by facilitating the hatching process, and more importantly, permitting early embryo endometrium interaction.

A lot of evidence suggests that assisted hatching techniques generally may improve clinical pregnancy rates after doing ICSI, especially in patients with poor prognosis. But after all, there is still some uncertainty.

Assisted hatching techniques include manipulation of the zona either mechanically, by chemicals and acids or by laser to help the embryo in the process of hatching and to facilitate embryo implantation.

Producing uniform and standardized holes using acid solution with micro tools under the control of manipulators have been problematic, as it requires extensive technical skills. An alternative tool for these methods has been proposed, which is drilling of ZP by Laser. Laser drilling is superior to chemical and mechanical drilling in many aspects, as it provides touch-free objective-delivered access to the target, with minimal absorption by the embryos. Moreover, Lasers are cost effective and could be integrated in an existing inverted microscope. Most importantly, it causes no thermal or mutagenic side effects to the embryos and is controlled accurately.

Also, LAH significantly reduces the time where the process of assisted hatching is being done outside of the incubator.

Previous studies regarding the efficacy of LAH techniques that was done on embryos of mice showed that the best way to do LAH is the total full-thickness method as it resulted in more fully hatched blastocysts, compared to other LAH techniques. This was found to be completely contrary to what was found in humans; where full-thickness LAH had the worst pregnancy results.
Our study found that quarter LAH significantly increased the pregnancy rates of patients undergoing ICSI cycles with poor prognosis.

MATERIALS AND METHODS

This prospective randomized controlled study was held on 130 patients divided equally into two groups, the experiment group and the control group. Each group consists of 65 patients.

Patients were randomized using sealed envelope into two groups; experiment group and control group. All patients participating in this study signed a clear and thorough informed consent.

Ethical approval for this study was obtained from the Egyptian Ministry of Health’s Ethical committee.

The embryos from the experiment group underwent quarter LAH -as to be prescribed later in the method section- on day three and three hours before the embryo transfer.

The embryos from the control group did not undergo any form of assisted hatching; i.e. the ZP was intact all the time.

Inclusion Criteria

Patients participating in this study fulfilled the following criteria:

- Age: Thirty-eight years old or more.
- Patients requiring 375 I.U. of gonadotropin or more per day.
- Patients with previous failed ICSI.

Method

This study was held in a private IVF center in Cairo, Egypt. This study took place from December 2017 to November 2018. All embryos included in this study were produced by ICSI.

Embryos from 65 patients (the experiment group) that were deemed to be transferred have undergone quarter LAH (quarter of the circumference of the outer layer of the ZP is thinned).

All patients underwent Antagonist induction protocol, with a minimum of 375 I.U. of gonadotropins per day.

Ova pick up was done 34 to 36 hours after the patient received a shot of Human Chorionic Gonadotropin (HCG) (Choriomon, IBSA, Egypt).

After the oocytes were retrieved, they were denudated and incubated for two hours before injection.

ICSI was done on an inverted microscope (Olympus, Japan), equipped with a micromanipulator (Narishige, Japan), and a heated stage (Tukhi Hit, Japan).

After sperm selection was done, oocytes were put into the injection dish (Falcon, UK) with media suitable for ICSI (G-MOPS, Vitrolife, Sweden). Oocyte maturity is assessed and only oocytes showing the presence of polar body were injected (MII oocytes). Oocytes were held using a holding microneedle (Humagen, Origio, Denmark) and the polar body was directed to either the 12 O’clock or 6 O’clock position. Sperm was injected into the oocyte using a microinjection pipette (Humagen, Origio, Denmark).

On the first day after ICSI, fertilization was checked and only embryos with two prominent pronuclei were transferred from four-well culture dish containing G-IVF media (Vitrolife, Sweden) into four-well culture dish containing 0.5ml of G1 media (Vitrolife, Sweden) covered with layer of paraffin oil (Virtolife, Sweden). Every well contained anywhere from one to four embryos and was left in the incubator for another 24 hours at 37 °C and 6% concentration of CO2 in air and 5% concentration of O2.

On day two after ICSI, cleaved embryos were scored and up to three embryos were selected for LAH and embryo transfer or for vitrification.

The selected embryos were preferred to have a cumulative score of at least 12 and preferably higher, i.e. 4 cells with a grading of at least 3 out of 4, or 3 cells with 4 out of 4 grading.

The cumulative embryo score is obtained by multiplying the number of cells by the embryo grade (grade 1–4), which is based on the percentage of fragmentation of the embryo. A grade 4 embryo showed no fragmentation at all, while a grade 3 embryo showed 25% fragmentation.

Microsurgical LAH

Laser drilling was done directly on the embryos in the 4-well culture dishes (Nunc, Denmark). The dish was placed on the heated stage of inverted microscope (Olympus, Japan) equipped with Saturn 3 apparatus (Research Instruments, UK). The set up used for ZP microdrilling is similar to that described in detail by Germond, and his team.

The laser microsurgical system is composed of invisible laser diode beam emitting at a wavelength of 1.48 μm. The exposure to Laser shot is around 10-20 millisecond. One Laser pulse is enough to create a whole with a diameter of 5 – 7 micrometers. With the help of the moving stage of the inverted microscope, the aiming spot of the laser was positioned at the ZP where the perivitelline space is greatest. The diameter of the ZP covers ~30 to 40% of the screen monitor, thus ensuring the aiming spot could be accurately placed between the middle and outer edge of the ZP. The laser beam was shot at the ZP by using the computer software.

Quarter LAH was done for the selected embryos three hours prior to the embryo transfer into the uterus.

As mentioned above, the embryos underwent quarter LAH, i.e. the inner membrane was not reached by any means. This is done by the thinning of the ZP that was
initiated at one point and continued until 25% of the ZP was irradiated (for example, laser drilling was initiated at the 12 o’clock position and consecutive irradiations were generated until the 3 o’clock position of the embryo was reached).

Embryo Transfer

Embryo transfer was done with a Labotect catheter (Labotect, Straberg, Germany), and the physician was blinded to the control and test groups.

Luteal phase support for the endometrium

All patients received 100mg of progesterone in a form of IM injections starting from the ovum pick-up day. (Prontogest, Marcyrl, Egypt).

After fourteen days from embryo transfer, patients had a pregnancy blood test. Women with βHCG = 25 or higher were considered positive i.e. pregnant. Seven weeks later, clinical pregnancy was established with the presence of fetal heartbeat.

Statistical Analysis

Statistical analysis was performed using SPSS computer program (version 19 windows) (IBM Inc., Chicago, Illinois, USA). Results are expressed as mean± standard deviations (SD) and number (%). Comparison between categorical data [n (%)] was performed using Chi square test. Test of normality (Kolmogorov-Smirnov test) was used to study the distribution of data. Accordingly, data were found to be normally distributed, so comparison between variables was performed using independent samples t-test. A P value ≤ 0.05 was considered significant.

RESULTS

This study was conducted on 130 infertile women undergoing ICSI cycles with poor prognosis; poor responder women whose age is 38 or more, required 375 I.U. of gonadotropin or more per day to well stimulate their follicles and with history of previous failed ICSI. Table 1 shows the description of the patients in the study.

| Table 1: Patients basal and cycle characteristics. |
|---------------------|----------|----------|----------|
| | Laser | Controls | P Value |
| Number of cases | 65 | 65 | |
| Age | 39.2 ±1.17 | 39.5 ±1.18 | 0.152 |
| No. of oocytes | 5.6 ±3.33 | 5.5 ± 3.50 | 0.806 |
| Fertilization rate (%) | 71.2 ±20.02 | 67.3 ±17.84 | 0.559 |
| No. of Embryos Transferred | 2.7 ±0.55 | 2.5 ±0.69 | 0.178 |

- Results are expressed as mean ±standard deviations (SD). A P value ≤ 0.05 was considered significant.

Regarding the characteristics between both groups that can affect the pregnancy rate, like age, number of retrieved oocytes, fertilization rate and number of embryos transferred per case, was all found to show no statistical difference (Table 1).

There was a statistical difference (P<0.05) between the two groups regarding both chemical and clinical pregnancy (Table 2) (Figure 1 and 2).

Table 2: Clinical and chemical pregnancy rates in the Experiment and Control groups.

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>Control</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Pregnancy %</td>
<td>27/65 (41.5%)</td>
<td>15/65 (23.07%)</td>
<td>0.024</td>
</tr>
<tr>
<td>Clinical Pregnancy %</td>
<td>25/65 (38.4%)</td>
<td>13/65 (20%)</td>
<td>0.021</td>
</tr>
</tbody>
</table>

- Comparison between categorical data [n (%)] was performed using Chi square test. A P value ≤ 0.05 was considered significant.

DISCUSSION AND CONCLUSION

It is still quite debatable if assisted hatching, and specifically LAH, has any benefit in increasing pregnancy rates. Some literature say that it is highly beneficial for selected infertile patients, with specific inclusion criteria.9
Others suggest that assisted hatching generally increases the pregnancy rate in unselected and young groups of patients10,11, and another group of researchers believe that assisted hatching techniques have no value at all in terms of increasing pregnancy rates12, and a final group of researchers believe that assisted hatching generally increases the pregnancy rate, but it does not matter what kind of assisted hatching being used13.

Meta-analysis done by the research team led by Da Li showed that there is still uncertainty whether assisted hatching techniques increases pregnancy rates after ICSI or not, so further research is needed5. Same result was also found by He and his colleagues in their systemic review and meta-analysis, where they could not draw a reasonable conclusion from their collected data14.

There are many assisted hatching techniques, including mechanical15,16, Chemical7, or Laser9. All of those methods appeared to yield quite similar overall results but it was found that LAH techniques were the safest among all other assisted hatching techniques12,17.

Patients in our study were offered Quarter LAH based on their selection criteria; which was if their age is >38, and patients that were deemed to be poor responders, or those who required high dosage of gonadotropins, higher than 375 I.U., and those who had previously failed ICSI.

We did not include the total LAH in our study, because it was proven how damaging it can be to fully penetrate the ZP of the embryos, exposing the inside of the embryo to all sorts of metabolic substances produced by the embryos into the culture media, and also making the embryo very vulnerable to infection, thus drastically decreasing the pregnancy rates.

When testing this full breaching method (Mantoudis and his team) had to cut the experiment short because of how low the pregnancy rate was (5.2%), in a sign of how devastating the technique was on the vitality of embryos, and consequently the pregnancy rates9.

In the same aforementioned study, to try and avoid the effects of the total breach of the inner membrane of the ZP, patients took doses of immunosuppressants, steroids and antibiotics. Immunosuppressants and steroids were used to avoid the immunological destruction of the embryos, and the antibiotics were used to help maintain the embryos, and the mother, healthy and to avoid any infection. Unfortunately, that did not help in increasing the pregnancy rates.

In this study, we didn’t want our patients, and their embryos, to go through such an unnecessary procedure. Thus, we did not use the total breaching technique, that is why steroids and antibiotics were not used as part of our study.

In the present study, we focused on the effect of Quarter LAH on pregnancy rates, and whether if we should use Quarter LAH routinely for patients with poor prognosis.

Our results suggested that quarter LAH significantly increased chemical pregnancy rate in selected groups of infertility patients, where in the experiment group ($n=65$) the pregnancy rate was 41.5% (or $27/65$) while it was 23.07% (or $15/65$) in the control group ($n=65$), the difference was statistically significant ($P=0.024$).

Clinical pregnancy rate was 38.4% (or $25/65$) in the experiment group, while it was 20% (13/65) in the control group. Those results were found to be statistically significant ($P=0.021$).

Our findings were quite similar to those found by Meldrum and his colleagues, as well as Elhussieny and his team, that using Assisted Hatching techniques enhanced the pregnancy rates in patients with advanced age18,19.

We believe the increased pregnancy rate in the experiment group is consistent with the hypothesis that quarter LAH mimics the normal hatching process of the embryo, where a series of weakened points in the ZP (due to intrinsic pressure of the growing embryo) gets thinner and then the zona opens up when the embryo is ready to hatch at the blastocyst stage.

Thus, we conclude that Quarter LAH increases both the chemical and clinical pregnancy rates in patients with poor prognosis such as advanced age (38 years old or more), previous failed ICSI and poor responders who required more than 375 I.U. of gonadotropins per day to well stimulate their follicles, and we suggest that Quarter LAH should be offered routinely to patients that meet the aforementioned criteria.

Acknowledgement: We would like to thank Dr. Yasmin Ahmed Bassiouny (Assistant Professor of Gynecology and Obstetrics, Faculty of Medicine, Cairo University) for her immense help for the completion of this work. Also we thank everyone at Nile IVF center. A special word of thanks for Dr. Ahmed Fathy Elmeslmany (El Hussein University Hospital) for his endless support.

REFERENCES

Source of Support: Nil, Conflict of Interest: None.