Review Article

Coupling Reactions of Aryldiazonium Salt. Part-XI: Review on Coupling of Aryldiazonium Salts of Aminobenzothiazoles with Aromatic and Heterocyclic Components.

Amol N. Dhake¹, Chandrashekhar J. Patil^{*1}, Ganesh R. Chaudhari²

¹P. G. Research Center, Department of Chemistry, MTES's Smt. G. G. Khadse College, Muktainagar, Tal. - Muktainagar, Dist. - Jalgaon, M. S. India.
 ²P. G. Research Center, Department of Chemistry, SES's Arts and Science College, Bhalod, Tal. - Yawal, Dist. - Jalgaon, M. S. India.
 *Corresponding author's E-mail: drcjpatil@yahoo.com

Received: 09-07-2021; Revised: 25-09-2021; Accepted: 02-10-2021; Published on: 15-10-2021.

ABSTRACT

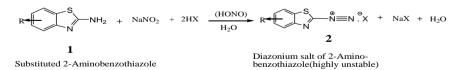
The azo compounds synthesized from substituted 2-aminobenzothiazoles were scientifically significant for sensor, nano chemistry and pharmaceutically useful applications. Azo-dyes were very important and useful class of synthetic organic compounds, that have a huge variety of applications.

Keywords: 2-Aminobenzothiazole, azo dyes, diazotization, coupling, Biological Activity.

QUICK RESPONSE CODE \rightarrow

DOI: 10.47583/ijpsrr.2021.v70i02.011

DOI link: http://dx.doi.org/10.47583/ijpsrr.2021.v70i02.011

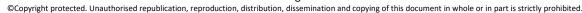

INTRODUCTION

zo compounds have good fastness and high dyeing properties, also wide applications such as dyeing of textile fibers, cosmetics, plastics, paper, leather and bio-medical studies. Azo compounds were synthesized from aminobenzothiazole and different aromatic or heteroaromatic anilines or phenols. Azo class of compounds or dyes were peculiarly characterized by analysis of the azo group (–N=N–) in their skeleton with aromatic or hetero-aromatic systems. The physio-chemical properties and biological activities makes them useful in variety of applications and in analytical field.

Since, their discovery in 1858¹ many protruding named reactions associated with diazonium salts of arene moiety and have evolved throughout development of one century plus. In 1884, Sandmeyer found out that by treating with

copper chloride, benzene diazonium salt was converted into chlorobenzene². The azo compounds are also valuable in the pharmaceutical and medicinal fields³ and possibly the azo-imine linkage would be accountable for biological activities showed by some Schiff bases as reported⁴. Preparation of most of the azo compounds includes diazotization of a primary (aromatic or heteroaromatic) amine, along with by coupling with coupling agents⁵ viz. pentane-2,4-dione (or acetylacetone)⁶, phenols⁷⁻¹¹.

Literature shows studies on the derivatives in order to explain the newer aptitudes of similar type of compounds. Sometimes azo compounds are frequently described as a chromogen in the literature¹¹. The hydroxy⁷⁻¹¹ or amino-¹² groups are common functional group of organic compounds used as coupling agents¹³. The appearance of various classes of synthetic dyes¹⁴ containing azo dyes occurred due to constant effort. Recently, from our laboratory a review is published¹⁵ pertaining to the reaction of varied diazonium salt with salicylic acid and phenolic compounds, coupling reactions of aryldiazonium salt of various substituted 2-aminobenzothiazoles with Aromatic or Heteroaromatic mofits formed azo dyes¹⁶, the diazotization proceeds with easy processes and ecologically benign situations with high yields of the products¹⁷.


Scheme 1: Typical reaction Mechanism of Diazonium salt synthesis.

Scheme-2: Coupling Reaction of Diazonium salt with aromatic or hetero-aromatic compound.

International Journal of Pharmaceutical Sciences Review and Research

Available online at www.globalresearchonline.net

Literature Survey:

Literature marked that the new azo dyes were synthesized¹⁸ by diazotization of 2-amino benzothiazole and coupling with various aromatic compounds such as naphthol derivatives, N, N-dimethyl aniline and 8-hydroxy quinoline. The structures of the synthesized compound were confirmed by UV-Vis, FT-IR and ¹H NMR spectroscopic methods. Antimicrobial activity by well plate method of these synthesized compounds were studied. Antioxidant studies of the compounds were also accomplished by measuring the DPPH radical scavenging assay and metal chelating method. Some compounds exhibited much better antibacterial activity and having good antioxidant property.

Two series of related donor–acceptor conjugated heterocyclic azo dyes¹⁹ have been prepared by azo coupling reaction. Their electrochemical, optical, and thermal properties have been studied. HRS in dioxane solutions with a fundamental wavelength of 1064 nm was employed to estimate their second-order nonlinear optical properties. These azo dyes exhibited Good to excellent thermal stabilities (235–317 °C). Study showed that modulation of the optical and electronic properties has been accomplished by insertion of the benzothiazole acceptor group in the thienyl pyrrole system to 2 or 6 position of the benzothiazole heterocycle.

New benzothiazole based azo dyes²⁰ and derivatives were prepared by diazotization of 2-amino-6-substituted benzothiazoles and coupled with 4-imino-3,4-dihydro-2Hpyrimido[2,1-b][1,3]benzothiazole-2-one in neutral media. These azo dyes were characterized by various spectroscopic methods like UV-Vis, FTIR, NMR and Mass Spectrometry. Newly synthesized compounds are screened for *in vitro* antimicrobial activities. The few azo compounds exhibited good anti-bacterial activity and antifungal activity.

Diazotization of 2-aminobenzothiazole by using sulfuric acid and sodium nitrite to give diazonium salt²¹ which coupled with alkaline salicylaldehyde solution to form azoaldehyde derivative. The resulting aldehyde was reacted with the various aromatic amines viz. 3-nitroaniline, 4nitroaniline, 4-methoxyaniline, 4-hydroxyaniline, 4bromoaniline, 2-methoxyaniline, 4-chloroaniline and 2,4dichloroaniline using microwave irradiation technique in ethanol to yield eight imines of benzothiazole. The antibacterial activity of these compounds was studied in vitro by using two types of bacteria, Staphylococcus aurous (Gram-positive) and Escherichia coli (Gram-negative). Newly prepared imidazolidines exhibited better activities than gentamycin against Staphylococcus aurous while, some compound showed better activities against Escherichia coli when compared with that of the control drug.

Diverse diazenyl derivatives were prepared²² by reacting 6substituted-2-aminobenzothiazole derivatives with 2naphthol in presence of NaOH. These compounds were screened for antimicrobial activity against *P. mirabilis, S. aureus, C. albicans, E. coli, S. pyrogens* and *A. fumigates* using Amphotericin B and Ciprofloxacin as standard drugs. Few compounds exhibit mild to moderate antimicrobial activity.

Various hetarylazo disperse dyes were prepared and applied by exhaustion on cellulose acetate were estimated visually and instrumentally²³. A suitable agreement amongst the visual and the instrumental evaluation of these properties was determined. The colour and dyeing properties, temperature range and rate of dyeing of the dyes were studied.

New azo compounds prepared, incorporated with ion of heterocyclic bioactive moiety. Diazo-coupling reaction of the 2-amino benzothiazole with different synthetic phenolic antioxidant²⁴ compounds like phloroglucinol, BHA, 2,4- and 2,6-di-tert-butylphenol. Their structure was confirmed by various spectroscopic techniques, such as UV-Vis, FT-IR, ¹H NMR, ¹³C NMR and LC-(ESI). Their biological effectiveness of the azo compounds was assessed by antioxidant activities like reducing power activity and DPPH radical scavenging activity. Few of them exhibit efficient antioxidant ability. The substantial antibacterial activity showed by the azo compounds against human pathogenic organisms. In vitro anticancer and toxicity of some azo compounds were assessed by MTT cytotoxicity assay against lung cancer cell line and normal skin cell line. In silico molecular docking study determines the azo compounds owing several crucial interactions with EGFR protein.

Azo-phenol based receptors, having an azo core incorporated with naphthol²⁵ and substituted benzothiazole units were prepared and their complete optical properties have been examined. The nitro derivative displayed, promising optical behaviour in the absence and presence of various transition metal ions in aqueous-acetonitrile solution. It has revealed that greater sensitivity, for the detection of Hg^{2+} ion by greater fluorescence. The characterization of synthesized compounds by emission, absorption, FT-IR, and ¹H NMR spectroscopic methods that showed favourable coordination of Hg²⁺ metal ion with the phenolic oxygen atom, the azo nitrogen atom adjacent to the naphthol ring, and the thiazole nitrogen of benzothiazole ring. Azohydrazone type of tautomerism by the photoinduced proton transfer reaction and also metal induced (Hg²⁺ ion) proton transfer reaction from the hydrazone form in the existing organic molecular systems have been examined by photo-irradiation and fluorescence excitation methods, also by ¹H and ¹³C NMR spectra.

Dyes with heterocyclic diazo components have received much attention because of their high tinctorial power and excellent brightness because the dyes prepared from 2-aminobenzothiazoles and 2-aminothiazoles have played a significant role in disperse dye²⁶ technology. Various dyes prepared from several heterocyclic amines with 2-amino-1,3,4-thiadiazoles, 5-amino-1,2,4-thiadiazoles, 5-amino-

isothiazoles, 2-aminoimidazoles3-amino-2,1benzisothiazoles, 2-aminothiophenes, and 5aminopyrazoles have been reported. Introducing newer method of preparation of heterocyclic diazo components, which are being used to prepare acid dyes for polyamide carpet fibres. Few offers excellent brightness of shade and they are commercially competitive with more expensive anthraquinone type. Also, few have the excellent levelling properties.

7-Amino-3-phenylazo-2-methyl-4Hpyrazolo[1,5-a] pyrimidine-5-one was synthesized²⁷ by the reaction of 5amino-3-methyl-4-phenylazo-1*H*-pyrazole and 2aminobenzothiazole with ethyl cyanoacetate in acetic acid at 150°C. Four novel heterocyclic azo disperse dyes were prepared by the coupling of heterocyclic amines-based diazonium chloride with 7-Amino-3-phenylazo-2-methyl-4H-pyrazolo[1,5-*a*]pyrimidine-5-one. The solvatochromic behaviours of related dyes were studied in detail by using ultraviolet-visible absorption spectrometer also these were purified and characterized by elemental analysis, FTIR, and ¹H NMR. Experimental data was supported by density functional theory. The detailed analysis of predicted tautomeric structures was also reported.

The PUF grafted²⁸ with the organic compound Me-BTAP was successfully applied to the pre-concentration of cadmium and lead. The sorbent showed characteristics that are desirable for materials used in solid-phase extraction systems, such as resistance to swelling and changes in pH, low resistance to flow passage, and simplicity in preparation. On application to the preconcentration system, the solid phase provided a simple and sensitive method for the determination of cadmium and lead by FAAS. It is a good alternative to estimate these elements. Extractions of other elements were tested using this sorbent.

The isomer mixture of 5,6- and 6,7-dichloro-2-aminobenzothiazole²⁹ was used as the first component in the synthesis of a series of disazo disperse dyes. The influence of structural variations in the end and middle components on the colour of the dyes is evaluated.

The azo aldehyde was obtained by coupling process between 2-aminobenzothiazole diazonium ion³⁰ and 2hydroxybenzaldehyde and transformed to the corresponding imines by treating with 3-bromoaniline, 2chloroaniline, 2,4-dichloroaniline, 4-nitroaniline, and 3nitroaniline to give imine derivatives¹³. These compounds were inserted in reaction with (NaN₃) to produce novel tetrazoles. The structures of tetrazoles were determined based on FT-IR, NMR, and Mass spectral data.

Some new acids benzothiazole azo dyes classified in groups, obtained from 2-aminobenzothiazoles³¹ 6-substituted with $-CH_3$, $-OCH_3$, -CI, $-NO_2$ groups which are the diazotizable constituent, coupled with 12 coupling constituents at temperatures of 0-5°C and pH of 1.0 - 1.5 are presented. The sulphonic groups in the dye molecules impart these proper solubilities for dyeing the protein

supports such as chrome tanned leather and furs. The acid benzothiazole azo dyes were characterized by melting point, water solubility, and UV-Vis, MS, and FT-IR spectra.

Some benzothiazole azo compounds³² were prepared and studied for their microbial activity. These compounds were prepared by the condensation of substituted phenyl urea with [4-(4,6-Dichloro-[1,3,5]triazin-2-yloxy)-2,6-dimethyl-quinolin-3-yl]-(6-methoxy-benzothiazol-2-yl)-diazene,

which was prepared by the reaction between cyanuric chloride and 3-[(6-methoxy-benzothiazol-2-yl)-diazinyl]-2,6-dimethyl-4-hydroxyquinoline. 3-[(6-methoxy-benzothiazol-2-yl)-diazinyl]-2,6-dimethyl-4-

hydroxyquinoline prepared by coupling of 2,6-dimethyl-4hydroxyquinoline and diazotized 2-amino-6-methoxy benzothiazole and were characterized by elemental analysis and spectral methods.

The optical properties of a series of side-chain liquid crystalline polymers containing azo-benzothiazole³³ mesogen with different terminal substituents (-H, -CH₃, and –OCH₂CH₃) in four organic solvents of varying polarity have been examined by absorption and fluorescence spectral analysis. Solvatochromic studies of these compounds don't show any regular difference in the absorption and emission intensities with varying the polarity of the solvent. Theoretical studies were executed based on diverse solvent correlation methods such as Dimroth-Reichardt and Kamlet-Taft methods to examine the solute-solvent interactions. Both emission and absorption maxima of examined polymers were bathochromically shifted with the removal of 6 position hydrogen atom by electron-donating groups in benzothiazole moiety.

Azo dyes derived from 2-amino-6-(2-chloroethoxy) benzothiazole and 2-amino 4-(2-hydroxy ethoxy)-benzothiazole³⁴ were prepared by diazotization and coupling with different N, N-disubstituted anilines. The dyes were then quaternized with some alkylating agents, dimethyl sulphate, acrylamides, benzenesulfonic acid methyl ester, and epoxy compounds. The new benzothiazolic cationic dyes absorb in the region of 606-636 nm and have molar absorptivity of 40000--80000 L mol⁻¹ cm⁻¹.

Several 2-, 4- and 7-substituted benzothiazole derivatives were synthesized³⁵ to inquire into the relationship between the fluorescence of metal chelates and their structures and to investigate their applications as analytical reagents. The color and fluorescence reactions of the metal ions with benzothiazole derivatives were examined by spot tests. When metal complexes are formed there was the color change of 2-substituted derivatives was more notable than that of 4- and 7- substituted. As fluorometric reagents for metal ions, though, 4-aminobenzothiazole derivatives were superior to 2-amino and 7-aminobenzothiazole derivatives.

The series of heterocyclic azo dyes were prepared with 4-hydroxy coumarin by diazo-coupling reaction³⁶. The

Available online at www.globalresearchonline.net

structural aspect of the newly synthesized compounds was accomplished by various physicochemical techniques like UV-Vis, FT-IR, NMR, and mass spectrometry. The computational calculations and geometrical optimization of the synthesized azo dyes were examined with Gaussian software through the help of the DFT method using a 6-31G (d,p) basis set at the gaseous phase. Similarly, the quantum chemical parameters were estimated to know the structural activity concept of the dyes. The pharmacological efficiency of the azo dyes was examined by antitubercular, antimicrobial, DNA cleavage. The synthesized compounds exhibited significant inhibitory activity against tested microbes. Further, the in silico molecular docking displayed effective binding properties of the compounds against the RpsA target receptor.

The new azo derivative of 2,5-dihydroxy-3-undecyl-1,4benzoquinone with 2-aminobenzothiazole was prepared³⁷. The product formed a complex with Mn(III) chloride, nitrate, acetate, and perchlorate. These complexes were found to exhibit enhanced antibacterial, antifungal, and anthelmintic activity than the ligand.

The calamitic liquid crystals involving a benzothiazole ring inside the central core and two various linkage groups have been prepared. Their liquid crystalline properties were studied³⁸ and compared with those of the analogous series of imines. The effect of the linkage group inside the central core has been confirmed to determine the variety of mesomorphism showed by the compounds. The compounds with imine and azo linkages act similarly and show typical nematic and smectic C mesophases. Compounds incorporating an amide linkage show a poorer mesomorphism and mainly present a smectic C mesophase.

Perfluoroalkyls-substituted benzothiazolyl bisazo³⁹ dyes showed higher solubility and greater bathochromicity than the corresponding alkyl derivatives. These dyes exhibited good dichroism (order parameter S>0.75).

Aminothiazoles, benzothiazoles, thiadiazols and thiophenes were diazotised and coupled to N-p-cyanoethyl-N""-p-hydroxyethylaniline⁴⁰ to give dyes which coloured polyester in orange to blue hues. The colour of the dyes is discussed with respect to the nature of the heterocyclic ring and substituents therein. Solvent effects on the visible absorption maxima of some of the dyes are also reported.

The heterocyclic amines viz. 2-amino-6-methoxy and 2amino-6-nitrobenzothiazole, 3-amino-5-nitro-[2,1]benzothiazole, and 2-amino-3,5-dinitrothiophene were diazotized and coupled to substituted N- β -acetoxyethyl anilines to give dyes⁴¹ which colored cellulose acetate in red to deep blue hues. Dyeing and fastness properties of the dyes on cellulose acetate are also reported.

The heteroaryl amines have been prepared from the reaction of aniline derivatives, potassium thiocyanate and bromine in acetic acid. Coupling of diazonium salts of corresponding amines with 2-methylindole led to hetaryl-

azoindole dyes⁴². These dyes have been characterized by UV–Vis, FT-IR and ¹H-NMR spectroscopy. The solvatochromism properties of dyes have been investigated in various solvents. The antimicrobial activity of the synthesized dyes has been estimated against *Bacillus subtilis, Escherichia coli, Micrococcus leuteus* and *Pseudomonas aeruginosa* bacterial strains. The results exhibited that some of these dyes show good antibacterial activity.

New heterocyclic azo dyes prepared by the diazotization process by using 2-amino-6-ethoxybenzothiazole⁴³ with coupling compounds under suitable experimental conditions. characterization of these compounds has been done by the various analytical methods like UV-Visible absorption spectra, FT-IR, ¹H NMR, ¹³C NMR, elemental analysis and mass spectrometry. Solvatochromism properties of the azo dyes was studied at varied solvents with increasing polarity. The electrochemical properties of the synthesized compounds were examined by using cyclic voltametric method.

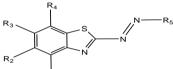
Synthesized hydroxyls azo dyes⁴⁴ by dizotization and the proton dissociation constants (pKa) of the dyes in various organic solvent + water mixtures have been determined. The results found were discussed in terms of the solvent characteristic. Effects of H-bonding interactions and solvent basicity on the ionization process have been also examined. In a nutshell, the pKa values of the studied compounds were found to be mostly dependent on both the ratio and the nature of organic co-solvent. In addition, it was very important to identify which structures we are dealing in liquid solutions and how these structures effect physicochemical properties of distinct tautomer and their acidity constants. The theoretical calculations have been done in order to obtain an insight into structure features and physicochemical properties of the compounds under study.

Series of novel dichromophoric dyes based on 2aminobenzothiazoles⁴⁵ and 3-amino-1,2,4-triazole have been synthesized in high yields. All the dyes were classified as disperse dyes. Also, their electronic spectroscopic properties i.e., high dye-uptakes on polyester, highly extinction coefficients, excellent fastness properties and broad solvatochromic effects have been showed in these new disperse dyes. These synthesized dyes were suitable as pH indicator in the range of 11-13.

Novel azo-benzothiazole dyes⁴⁶ have been synthesized by condensation of 2-nitrosobenzothiazole and 6- nitro-2- nitrosobenzothiazole with aniline, anthranilic acid, 3- hydroxymethylaniline, 2-, 3- and 4-chloroaniline, 4- fluoroaniline, 4-iodoaniline or 4-nitroaniline. The new synthetic method defined is beneficial over the classic diazotization process usually used for the preparation of related disperse dyes, subsequently the existence of an electron-donating group at the para-position of the coupling component is no more a pre-requisite for the completion of the condensation reaction.

Novel azobenzothiazole dyes⁴⁷ obtained by condensation of 2-nitrosobenzothiazoles with several substituted anilines were synthesized and characterized. The effect of solvent polarity on absorption spectra was observed, also the relationship between dye structures and absorption in the UV–visible region examined. These dyes owning an aniline unit which had an o-electron donating group, showed unique absorption properties as exposed by a second, long wavelength absorption band.

To identify a useful alternative to H_3PO_4 , as a medium for diazoting heteroaromatic⁴⁸ amines, a number of organic acids having a similar ionization constant (Kt) were examined. The dichloroacetic acid was an effective solvent for both the diazotization of the synthesized compounds and the synthesis of vital commercial disperse dyes. Disperse Red 177 and Disperse Violet 52 dyes were easily formed in 85-90% yield and very pure form.


The azo compound⁴⁹ was synthesized and characterized by FT-IR, ¹H-NMR, ¹³C-NMR spectral methods. The electrochemical behaviour of the azo compound and its complex with Fe (III) has studied at glassy carbon disk GCE

electrode in dissimilar supportive electrolyte at concentration (1M) and scan rate (100mvs⁻¹). A linear correlation (0.1 – 4.0 μ g. ml⁻¹) was shown between absorbance at λ max and concentration. The effect of diverse ions on the determination of Iron (III) to explore the selectivity of the process were also studied. The projected scheme was effectively useful to the analysis of blood samples.

A series of 1-benzothiazolyl-3,5-diphenylformazans with substituents in the 6-position of the benzothiazole⁵⁰ ring were synthesized. The introduction of halogens and methyl and alkoxy groups into this position induces deepening of the color of the corresponding formazans as compared with the unsubstituted benzothiazolyl diphenylformazan. Benzothiazolylazo and 6methylbenzothiazolylazophenylhydrazones of benzaldehyde were isolated along with formazans in the coupling of benzothiazoline diazonium and 6methylbenzothiazolinediazonium sulfates with benzaldehyde phenylhydrazone.

 Table 1: Derivatives of aminobenzothiazole-azo compounds, their uses, metal complexes and the applications with references.

					R ₂	R ₁				
Sr. No.	R ₁	R ₂	R ₃	R ₄	R ₅	Use	Bio	Studies made	Metal	Ref
1	н	н	н	Н	N_		The synthesized compounds proved to be safer up to upper			
2	Н	н	н	Н	OH N	Convenient,	most dosage and show a significant antimicrobial and in vitro antioxidant			
3	Н	н	н	Н	HO	economical method for synthesis of azo dyes, coupled with naphthol derivatives 8-	activity. Dyes showed a potential antimicrobial activity and antifungal activity against important	UV-Vis FTIR ¹ H-NMR	-	18
4	н	н	н	н		hydroxy quinolone and N, N-dimethyl aniline to obtain azo dyes.	pathogens like A. Flavus C. Albicans and C. Keratinophilum, they don't have good activity to the fungus when compare to	DPPH		
5	н	н	н	н			clinically significant bacteria like <i>P.</i> <i>aeruginosa, E. coli and</i> <i>S. aureus.</i>			

Available online at www.globalresearchonline.net

					_					
6	н	Н	Н	н	HO NH					
7	Н	Н	Н	н						
8	н	н	Н	н	s N					
9	н	н	н	н	C ₆ H ₄ OMe4	Series of new azo dyes with normal or reverse polarities are				
10	н	Н	Н	н	C ₆ H ₄ F4	synthesised. By changing position of linkage of benzothiazole		¹ H NMR		
11	н	Н	CH ₃	н	N N N N N N N N N N N N N N N N N N N	heterocycle (2 / 6) to azo bridge, the electrochemical properties and linear poplinger	-	Electro- chemical Thermal properties	-	19
12	н	Н	CH ₃	Н	C ₆ H ₄ OMe4	linear, nonlinear optical properties of this well-defined asymmetric push-				
13	н	Н	CH₃	н	C ₀ H ₄ F4	pull π-conjugated systems can be readily tuned.				
14	н	Н	CH₃	Н	1Napthyl					
15	н	н	Н	н	$ \begin{array}{c} HN \\ N \\ S \\ HN \\ S \\ H \\ H \\ H \\ S \\ H \\ H$	Due to interaction				
16	н	н	NO ₂	н	$ \begin{array}{c} HN \\ N \\ N \\ S \\ 10b \end{array} $	of polar solvents and hetero or H atom present in compounds, very strong solvatochromic	Compound 10b and 10d showed better antibacterial activities than others. MIC of synthesized compounds 10c	UV-Vis IR		
17	Н	Н	H₃CH₂C O	н	$ \begin{array}{c} HN \\ N \\ S \\ 10c \end{array} $	performance, which was studied in different polar solvents. H bond formation mainly affects chromo	against <i>A. flavus,</i> extremely inhibited organisms were reported in compound 10b showed good MIC 100 μg/mL against <i>C.</i>	¹ H-NMR Mass Spectrom etry	-	20
18	Н	Н	H₃CO	н	$ \begin{array}{c} HN \\ N \\ S \\ 10d \end{array} $	tropic phenomenon.	albicans.			

19	Н	н	н	Н	ОН					
20	н	н	Н	н	H H H H H H H H H H H H H H H H H H H					
21	н	н	Н	Н	H H H H H H H H H H H H H H H H H H H					
22	Н	Н	Н	Н	H H H H H H H H H H H H H H H H H H H					
23	Н	Н	Н	Н	CH H H H Br					
24	н	н	н	Н	H H H H H H H H H H H H H H H H H H H					
25	Н	н	н	н	OH H N NO2		Newly prepared			
26	н	Н	н	Н	OCH3 CH H	Imidazolidines also known as tetrahydroimidazol es are biologically	imidazolidines showed greater activities than gentamycin against Gram-positive bacteria	FTIR,		
27	н	н	н	н		active N containing heterocyclic moiety which have been described to	and some compounds also showed better activities against Gram-negative bacteria when	¹ H-NMR UV-Vis	-	21
28	Н	Н	н	Н		shown wide display of significant biological activities.	compared with that of the control drug (Gentamycin).			
29	н	Н	н	Н	HO HO HAC HAC 11b					
30	Н	Н	Н	Н		5H ₉				
31	Н	н	Н	Н	HO HO HSC 11d					

32	н	Н	н	н	HO HO HN HN HN HN HN HN HN HN HN HN HN HN HN					
33	н	н	н	н	HO HO H ₃ C 11f					
34	Н	н	н	н	HO HO HN HN HN HN HO HN HN HN HN HN HO HO HO HO HO HO HO HO HO HO HO HO HO					
35	Н	н	н	н	HO +					
36	Н	Н	Н	Н			These compounds were screened for <i>in</i>			
37	Н	Н	CH₃	Н			vitro antimicrobial			
38	Н	Н	OCH ₃	Н			activity against four pathogenic bacteria			
39 40	н	н	Cl NO ₂	н	U U U U U U U U U U U U U U U U U U U	6-Substituted-2- aminobenzothiazol e can be a lead and strong molecule targeted to introduce new antimicrobials	viz. S. aureus, S. pyrogens, E. coli and P. mirabilis using Ciprofloxacin as standard drug. In vitro antifungal activity of these compounds was screened against pathogenic fungi C. albicans, and A. fumigatus using Amphotericin B as standard drug.	TLC FT-IR NMR M.P.		22
41	Н	н	CH₃O	Н	C ₂ H ₄ CO ₂ Me					
42	н	Н	CH₃O	Н	C ₂ H ₄ OH AcHN	Relation between the hues of dyeing (ho) values and		UV-Vis		
43	Н	н	CH₃O	н	OMe C ₂ H ₄ OAc AcHN	(ho) values and absorption maxima (λmax) of methanol solutions of dyes.	-	εmax ΔE	-	23
44	н	н	CH₃O	н	NHCH ₂ CH ₂ OH					

45 46 47 48	н н н	н н н	NO ₂ NO ₂ NO ₂	H H H	C2H4CO2Me C2H5 C2H5 C2H5 C2H5 C2H5CO2Me C2H4CO2Me C2H4CO2Me C2H4CO2Me C2H4CO2Me C2H4CO2Me C2H4CO2Me C2H4CO2Me C2H5					
49	Н	н	н	Н	AcHN OH	In silico molecular dock ing study has described that new azo compound bearing variability of tight	Antioxidant activity such as DPPH radical scavenging and reducing power activities showed the new azo compounds includes considerable antiradical property,			
50	н	н	н	н	НО	interactions with effective binding sites of EGFR protein in lung cancer tissues, which supports to	especially 2-(benzo[d]thiazol-2-yldiazenyl) -6-(tertbutyl) -4- methoxyphenol and 2-(benzo[d]thiazol-2- yldiazenyl)benzene-	UV–Vis		
51	н	н	н	н	OH	design the potent chemotherapy agent. The anticancer effectiveness of new bio effective azo compounds was explored by cytotoxicity activity	1,3,5-triol azo compounds showed significant antioxidant efficiency. As same in antibacterial evaluation, azo compounds 2-(benzo[d]thiazol-2-yldiazenyl) -6-(tertbutyl) -4-	FT-IR ¹ H-NMR ¹³ C-NMR LC-MS	-	24
52	Н	Н	н	Н	CH CH	against lung cancer cell line and observed that both are anticancer active.	methoxyphenol and 2- (benzo[d]thiazol-2- yldiazenyl)benzene- 1,3,5-triol shows notable bacterial resistant effect on human pathogens.			
53	Н	н	Н	Н		An efficient and				
54	Н	NO_2	Н	Н	ОН	cost-effective chemo sensor was				
55	Н	CH₃	Н	Н		developed that				
56	Н	OCH 3	Н	н		able to detect Hg ²⁺ ion selectively, in		UV-Vis		
57	Н	NO ₂	Н	н	OCH3	aq. medium and on a test paper strip. The chemo sensor was acted as a real time, sensitive, and naked-eye visible colorimetric sensor for Hg ²⁺ ion.	-	FT-IR, ¹ H-NMR ¹³ C-NMR	-	25

58	Н	н	CH₃O	н	OH HN OH	Azo dyes seem to				
59	Н	Н	CH₃O	Н	N(C ₂ H ₄ OH) ₂	offer no advantages over the Z-amino				
60	Н	Н	NO ₂	Н	H3COCHN N(C2H40H)2	isomers. Blue dyes are reported, 3- amino-2-nitro-4- cyano-5-				
61	Н	н	CH ₃ SO ₂	н	H ₃ C N ^{-C₂H₅ C₂H₄CN}	Methyl mercapto thiophene when diazotized and				
62	Н	Н	CH₃NH O₂S	Н	$\bigcup_{\substack{N^{-}C_{2}H_{4}OH}}_{\overset{I}{C_{2}}H_{4}CN}$	coupled to N,N- diethyl-Inmino acetanilide 3- Aminobenzo	-	-	-	26
63	н	Н	NO ₂	н		thiophenes and 3- OH amino-pyridines. which are 3- aminothiophenes				
64	Н	Н	CH_3	н		COCH ₃ containing respectively fused benzo and pyridino				
65	Н	Н	CH₃O	Н	C ₃ H ₆ NHCOCH	rings, give orange to red dyes with common aniline- type couplers.				
66	н	н	NO ₂	Н	N ^{-C2H5} C2H4CO2CH5	type couplets.				
67	н	н	Н	н		New heterocyclic azo dyes were Prepared and solvatochromic behaviours of dyes				
68	н	Н	OMe	Н		were studied by using ultraviolet- visible absorption spectrometer. The experimental data were supported by density functional theory using b3lyp/cc-pvtz level calculations, and a detailed analysis of predicted tautomeric structures was made	-	UV-Vis Elemental analysis FTIR ¹ H NMR	-	27
69	Н	н	Me	н	H ₂ N	The sorbent showed characteristics that are desirable for materials used in solid phase extraction systems, such as resistance to swelling and	-	FT-IR Differenti al thermal analysis (DTA) Thermogr avimetric analysis (TGA)	Zn(II) Hg(II) Cd(II) U(VI) Ag(I)	28

Rx

International Journal of Pharmaceutical Sciences Review and Research

						variations in pH, low				
						resistance to flow passage and simplicity in preparation. Also,				
						when applied to preconcentration				
						system, solid phase providing a simple and sensitive method for				
						determination of cadmium and lead				
						by FAAS. The synthesized				
						material is a good alternative for the				
						determination of these elements.				
70	Н	CI	Cl	Н	NH ₂					
71	Н	CI	Cl	Н	CH ₃ NH ₂	Estimation of substituent effects on colour of dyes.				
72	н	CI	CI	Н	H ₃ C NH	Diazotisation - coupling process of mono azo intermediates retaining				
73	н	CI	Cl	Н	H ₃ CO NH	essentially aqueous phase systems		UV-Vis,		
74	н	CI	Cl	н	NH2	based dis azo some dyes were unsatisfactory,	-	Mass Spectra, Column Chromato graphy	-	29
75	н	Cl	Cl	Н	H ₃ CO NH ₂	3				
76	н	CI	CI	н	CI NH2	2				
77	Н	CI	Cl	н	CI NH ₂					
78	н	CI	CI	Н	CI NH2					

79	Н	CI	CI	Н	C3H4 N
80	н	Cl	Cl	Н	
81	Н	CI	Cl	н	
82	Н	CI	Cl	н	
83	Н	CI	CI	н	
84	Н	CI	Cl	н	
85	Н	Cl	Cl	Н	
86	Н	CI	Cl	н	
87	Н	CI	Cl	н	
88	Н	CI	CI	н	
89	Н	CI	Cl	Н	

90	Н	CI	Cl	н					
91	н	CI	Cl	н					
92	Н	CI	Cl	н					
93	н	н	н	Н	ОНСНО				
94	Н	Н	Н	н		The azo dyes were synthesized by			
95	Н	Н	Н	Н		coupling of diazonium ion with salicylaldehyde, then imines were prepared by reaction with various aniline. These imines were		¹ H-NMR Mass	30
96	н	Н	Н	н		inserted in reaction with NaN₃ to form tetrazoles. Reactions rates of these tetrazoles were increased with decreasing the electron	-	spectra FT-IR	
97	н	Н	Н	н		withdrawal caused by substituent in benzene.			
98	н	Н	н	Н					

99	н	н	Н	н					
100	Н	Н	Н	н					
101	н	н	Н	Н	HONCI				
102	Н	н	Н	н					
103	н	н	н	н					
104	н	SO₃ H	Me	н					
105	н	SO₃ H	OMe	Н	i i 🦳				
106	н	SO₃ H	CI	н					
107	н	SO₃ H	NO_2	н					
108	н	SO₃ H	Me	н	H3COC COCH3				
109	н	SO₃ H	OMe	Н					
110	н	SO₃ H	Cl	н		Number of new acids benzothiazole azo dyes were			
111	н	SO₃ H	NO_2	Н		prepared. The sulphonic	MD		
112	Н	SO₃ H	Me	н	\square	groups in dyes impart these	M.P. UV-Vis Mass	_	31
113	Н	SO₃ H	OMe	н	N	proper solubilities for dyeing protein supports such as	spectra FTIR		
114	н	SO₃ H	CI	н	Ň	chrome tanned leather and			
115	н	SO₃ H	NO_2	Н		furs.			
116	н	SO₃ H	Me	н					
117	н	SO₃ H	OMe	Н	HO ₃ S	4			
118	н	SO₃ H	Cl	н	ОН				
119	н	SO₃ H	NO ₂	Н					
120	н	SO₃ H	Me	н					
121	н	SO₃ H	OMe	н					

Available online at www.globalresearchonline.net ©Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

88

122	Н	SO₃ H	Cl	Н	H0 ₃ S					
123	н	SO₃ H	NO ₂	н	AUX=OH, NH ₂					
124	н	SO₃ H	Me	Н						
125	Н	SO₃ H	OMe	н	Achil					
126	Н	SO₃ H	Cl	н	 Achil Achil = Me. Et					
127	Н	SO₃ H	NO ₂	н						
128	Н	н	OMe	Н	Me OH	Synthesized molecules were toxic against the bacteria. The				
129	н	Н	OMe	Н		comparison of antibacterial and antifungal activity of these	Synthesized compounds were screened for antifungal activity			
130	н	Н	OMe	н	R= Me, OMe, OEt, Cl, H	molecules with standard drugs shows that the presence of methoxy and halogen (-Cl) groups in the phenyl ring increases the antimicrobial activity. Their potency has been found to be lower than that of standard drugs, but their acute toxicity is significantly lower.	against C. albicans, A. Niger by plate diffusion method and antibacterial activities of compounds were studied against Gram-negative bacteria E. coli & S. typhi and Gram- positive bacteria S. pyogenes & S. aureus	FT-IR, ¹ H NMR Mass spectra	-	32
131	Н	Н	Н	н		Solvatochromic				
132	н	Н	CH ₃ OCH ₂ C H ₃	Н	H, O, OH O, C, O, OH H, O H, O	studies were made of these compounds and they did not show any regular variation on the absorption and emission intensities with varying the polarity of solvent.	-	¹ H NMR ¹³ C NMR UV-Vis and Fluoresce nce	-	33
134	н	Н	CIC ₂ H ₄ O	Н		The synthesised dyes were quaternized with various alkylating agents and molar	-	-	UV-Vis NMR FTIR Elemen tal	34

				(// 1		21, / Where 100. 11, 1 age		0570 0447	
135	Н	н	CIC ₂ H ₄ O	н	N C ₂ H ₄ CN	absorptivity of these dyes were evaluated.		Analysi s	
136	н	н	CIC ₂ H ₄ O	н	CH ₂ C ₆ H ₅				
137	н	н	CIC ₂ H ₄ O	н	C ₂ H ₄ C ₆ H ₅				
138	н	н	CIC ₂ H ₄ O	н					
139	Н	Н	CIC ₂ H ₄ O	Н	C ₂ H ₅				
140	н	н	CIC ₂ H ₄ O	н					
141	н	Н	CIC ₂ H ₄ O	Н	C2H5 I C2H4OC 2H4CN				
142	н	н	CIC ₂ H ₄ O	н					
143	н	н	CIC ₂ H ₄ O	н	C ₆ H ₅ NH				
144	Н	н	CIC ₂ H ₄ O	н	CeH5 N				
145	HO C ₂ H ₄ O	н	Н	н					

146	HO C ₂ H ₄ O	н	н	Н	C ₂ H ₄ CN					
147	HO C2 H4 O	н	н	н	Et N C ₂ H ₄ OC ₂ H ₄ Cl					
148	Н	н	Н	н	HO OCH3	The colour and fluorescence reactions of metal ions with				
149	Н	н	н	н	HO	benzothiazole derivatives were studied through spot tests. On			Co II	
150	Н	Н	Н	Н	ОН	formation of metal complexes in solution, colour change of 2- substituted derivatives was more notable than that of 4- and 7- substituted. As fluorometric reagents for metal ions, though, 4- aminobenzothiazol e derivatives were superior to 2- amino and 7- aminobenzothiazol e derivatives.	-	-	Mn II Cu II Ni II Hg II Cd II Bi III Ag I Pb II	35
151	Н	Н	OC₂H₅	Н	OH C C C C C C C C C C C C C C C C C C C	The computational calculations and geometrical optimization of the newly synthesized azo dyes were studied. Also, the quantum chemical parameters were evaluated to understand the structural activity concept of the dyes.	Newly prepared compounds were able to show significant inhibitory activity against tested microbes. In silico molecular docking showed effective binding properties of the compounds against RpsA target receptor	UV-Vis FT-IR NMR Mass spectra DFT	-	36
152	Н	Н	Н	Н	HO HO HO HO HO HO HO HO HO HO	new azo compounds of embelin with 2- aminobenzothiazol was synthesised. The prepared compound 6-(2'- benzothiazolylazo) embelin (H2ABTE) (I) was complexed with Mn(III) by using chloride, nitrate, acetate	The synthesized complexes were screened for antibacterial, antifungal and anthelmintic activities and the complexes were found to exhibit enhanced activity than the ligand.	-	Mn (III)	37

91

						and perchlorate as counter anions.				
153	Н	Н	n- C ₁₀ H ₂₁	н	OR R=n-Cn-H ₂ n ₊₁ n=3-10	Mesomorphic properties of the dyes were studied and a comparative studied of the influence of the linkage group on the mesomorphism of the materials.	-	¹³ C-NMR ¹ H-NMR Elemental analysis	-	38
154	Н	Н	C4H9	Н	NH ₂			UV-Vis ¹ H NMR Mass spectra Elemental analysis		
155	н	Н	C_4H_9	н		Synthesised dyes showed higher solubility and			-	
156	Н	Н	Н	Н		greater	-			39
157	Н	Н	C_4H_9	н	\square	bathochromicity than corresponding				55
158	Н	Н	C_4F_9	Н		alkyl derivatives, also these dyes showed good dichroism.				
159	Н	Н	C_6F_{13}	Н						
160	н	н	C ₄ F ₉ CH ₂ CH ₂ S	н						
161	Н	Н	C_4F_9S	Н						
162	Н	Н	C_4H_9	Н						
163	Н	Н	C_4F_9	Н						
164	н	Н	н	Н						
165	Cl	Н	н	Н						
166	н	Н	Cl	Н						
167	Br	н	н	Н						
168	н	Н	Br	Н						
169	F	н	н	Н						
170	Н	Н	F	Н						
171	SO 2M e	н	н	н		The synthesized dyes provide good coloration of		M.P.		
172	Н	Н	SO ₂ Me	н	C ₂ H ₄ OF	polyester and		FT-IR		
173	Н	н	CN	Н	N N	maximum light fastness was	_	¹ H NMR	-	40
174	CF 3	н	н	н	C ₂ H ₄ Ch	apparent in dyes prepared from		Elemental analysis		
175	Н	н	CF ₃	Н		diazo components				
176	N O ₂	н	Н	н		involving nitro substituents.				
177	Н	Н	NO ₂	н						
178	Н	Н	SCN	Н						
179	Н	н	OMe	н						
180	Н	Н	Me	Н						
181	Н	Н	NHAc	Н						
182	N O2	н	NO ₂	н						

183	N O ₂	н	SO₂Me	н						
184	CF 3	н	NO ₂	н						
185	Н	Н	OMe	Н	CH_CH_OCOMe	Dyeing and light				
186	Н	н	NO ₂	Н	CH ₂ CH ₃	fastness properties				
187	н	н	OMe	н		of these dyes were discussed				
188	Н	Н	NO ₂	Н		and estimated. These dyes were medium to high uptake on cellulose acetate, excellent wash fastness, and moderate to high light fastness depends on heterocyclic moiety and depth of dyeing.	-	UV-Vis ¹ H NMR Elemental analysis		41
189	Н	Н	Н	Н			The antimicrobial			
190	Н	н	Me	Н		Solvatochromic properties of synthesized dyes were examined in different solvents, also the antimicrobial activity of these dyes was studied.	activity of prepared dyes was evaluated	UV-Vis FT-IR ¹ H NMR	-	
191	Н	н	OMe	Н	. н		against M. leuteus, B.			
192	Н	Н	Cl	Н	СН		subtilis, E. coli and P. aeruginosa bacterial strains. The results exhibited that some of these dyes are potential antibacterial compounds.			42
193	Н	Н	Br	Н						
194	Н	(C ₂ H ₄	н						
195	н	н	EtO	н		Synthesized dye shows excellent colouring properties due to presence of				
196	Н	н	EtO	Н		chromophores in their skeleton and acts as good electron exchange mediators in redox reactions. Electrochemical behaviour of azo	-	UV-Vis FT-IR ¹ H NMR ¹³ C NMR Elemental analysis	-	43
197	Н	Н	EtO	Н		dyes was studied at glassy carbon electrode by using cyclic voltametric method.				
198	Н	Н	н	Н	OH	The pKa (Proton dissociation constants) values of synthesized compounds were	-	Dihedral angle Dipole moment (D)	-	44

					ОН	determine in aqueous buffer		Electronic absorptio		
100						solutions		n spectra		
199	Н	н	Н	Н		containing				
					ОН	changing proportions of				
						organic				
						solvents of various				
						polarities. Effects of				
					ОН	H-bonding				
200	Н	Н	Н	Н		interactions and				
						solvent basicity on ionization process				
						were also				
						discussed.				
					MeO	Solvatochromic				
						effects of various solvents were				
					S N	studied and dyes				
					$\sum_{i=1}^{n}$	were excited at				
201	н	н	OMe	н		279-355 nm and showed				
						fluorescence				
						emission at a				
						broad range i.e., 428–		UV-Vis		
						573 nm with low	_	FT-IR ¹ H-NMR	_	45
202						and medium		Elemental		
202	Н	Н	Н	Н	/~~~»	intensities. Fastness properties		analyses		
						of these dyes are				
						good to excellent and three				
					Ĩ,	derivatives of 3-				
203	Н	Н	OMe	Н		azo-1,2,4-triazoles				
						are used as pH				
						indicators in the pH				
						range of 11-13.				
204	Н	Н	Н	Н	C ₆ H ₆	New synthetic method was				
205	Н	H	Н	Н	2-CI-C ₆ H ₅	helpful				
206	H	H	NO ₂	H	3-CH ₂ OH-C ₆ H ₅	for classic				
207	H	H	NO ₂	H	C ₆ H ₆	diazotization process used for				
208	H	H	NO ₂	H	2-CO₂H-C6H5	preparation of				
209	H	н	NO ₂	H	2-CI-C ₆ H₅	disperse azo				
210	Н	Н	NO ₂	Н	3-CI-C ₆ H₅	dyes, the presence of an electron-		M.P.		46
211	H	н	NO ₂	H	3-CH ₂ OH-C ₆ H ₅	releasing group at	-	UV-Vis	-	
212	H	н	NO ₂	H	4-F-C ₆ H₅	para-position, or equivalent, of the				
213	Н	H	NO ₂	Н	4-CI-C ₆ H₅	coupling				
214	Н	Н	NO ₂	Н	4-I-C ₆ H ₅	compound is no				
						more a pre- requisite for				
215	Н	Н	NO ₂	н	4- NO ₂ -C ₆ H ₅	completion of				
						condensation reaction.				
216	Н	Н	NO ₂	Н	4- NO ₂ -C ₆ H ₅		The effect of solvent	¹ H NMR		47
217	н	н	H	н	2-CI-C ₆ H ₅	New 2- nitrosobenzothiazo	polarity on absorption	¹³ C NMR	-	47
21/										

			,					15514		
218	Н	Н	Н	Н	2-CI-C ₆ H ₅	les use as synthons	spectra were studied.	Mass		
219	Н	Н	Н	Н	3-CI-C ₆ H ₅	to access		spectra		
220	Н	Н	Н	Н	4-CI-C ₆ H ₅	New azo benzothiazole dyes		FTIR UV-Vis		
221	Н	Н	Н	Н	3-CI-C ₆ H ₅	through				
222	Н	Н	Н	Н	4-I-C ₆ H ₅	condensation with various aromatic				
223	Н	Н	Н	Н	3-CH ₂ OH-C ₆ H ₅	amines,				
224	Н	Н	Н	Н	4-F-C ₆ H ₅	mostly those that				
225	Н	Н	Н	Н	4- NO ₂ -C ₆ H ₅	containing electron withdrawing				
226	Н	н	н	н	4- NHCOCH₃- C ₆ H₅	groups at the coupling				
227	н	н	Н	Н	2- NHCOCH ₃ - C ₆ H ₅	component was extended				
228	н	Н	Н	Н	$2-OCH_3-C_6H_5$	successfully.				
229	Н	н	Н	Н	4-OCH ₃ -C ₆ H ₅	Hence, six new azo benzothiazole				
230	н	н	Н	н	2-SCH ₃ -C ₆ H ₅	dyes having				
231	н	Н	Н	н	4-SCH ₃ -C ₆ H ₅	electron releasing				
232	н	н	NO ₂	н	2-CI-C ₆ H₅	groups at aniline coupler were				
233	н	н	NO ₂	н	2-CI-C ₆ H₅	synthesized in				
234	н	Н	NO ₂	н	3-CI-C ₆ H₅	moderate to good				
235	н	Н	NO ₂	Н	4-CI-C ₆ H₅	yields.				
236	н	Н	NO ₂	Н	3-CI-C ₆ H₅					
237	н	Н	NO ₂	Н	4-I-C ₆ H₅					
238	н	Н	NO_2	н	3-CH ₂ OH-C ₆ H ₅					
239	н	н	NO ₂	н	4-F-C ₆ H ₅					
240	Н	Н	NO ₂	Н	4- NO ₂ -C ₆ H ₅					
241	н	н	NO ₂	н	4- NHCOCH₃- C ₆ H₅					
242	н	н	NO ₂	н	2- NHCOCH₃- C ₆ H₅					
243	Н	Н	NO_2	Н	2-OCH ₃ -C ₆ H ₅					
244	Н	Н	NO ₂	Н	4-OCH ₃ -C ₆ H ₅					
245	Н	н	NO ₂	Н	2-SCH ₃ -C ₆ H ₅					
246	Н	н	NO_2	Н	4-SCH ₃ -C ₆ H ₅					
247	н	н	NO ₂	н	CH ₂ CH ₂ CH CH ₂ CH ₂ OA	The 2-amino-6- nitrobenzothiazole was diazotized in a medium having 85% aq. Halo acetic				
248	Н	н	NO ₂	Н	CH ₂ CH ₂ CH ₂ CM	acid and conc. Sulphuric acid followed by coupling with different amines to form azo dyes. To find a beneficial alternate to	-	¹ H NMR Mass spectra M.P.	-	48
249	н	Н	н	н	CH ₂ CH ₂ CH N CH ₂ CH ₂ OA:	Phosphoric acid, as a medium for diazotising heteroaromatic amines, a number of organic acids				

						having a similar ionization						
						constant (Kt) were studied						
250	Н	Н	Н	Н	HO	Electrochemical properties of azo reagent and complex with Fe (III) was studied. The azo reagent was a maximum absorption at 440 nm reacts with FeCl ₃ .6H ₂ O at room temperature to give a colored complex at pH 6. The effect of pH on absorption of complex formed by reaction of reagent with Fe(III) was studied at various pH.	-	FT-IR ¹ H-NMR ¹³ C NMR	Fe (III)	49		
251	Н	Н	н	н		Benzothiazolyl azo						
252	Н	Н	Me	Н	Cette Ce	and 6-methyl benzothiazolyl azo phenylhydrazones of benzaldehyde were prepared with formazans in the coupling of benzothiazoline and 6-methyl benzothiazoline diazonium sulfates with benzaldehyde phenylhydrazone. The synthesized compound form stable complexes with different metals.	-	M.P. Elemental Analysis	Cu Ni Zn Co	50		
۵bbr	eviati	ons:				TGA	: Thermogravin	netric Analys	sic			
B. su			: Bacillus	subtilis		SAR	: Structural Act					
E. col			: Escheric			SmC	: Smectic C		·····			
					eruginosa	N	: Nematic					
			: Staphyle			SmA	: Smectic A					
	ogene		: Streptod			DFT	: Density Funct	ional Theorv	,			
	bicans		: Candida			TD-DFT	:Time Depend			onal		
FTIR					n Infrared Spectros	Theory			,	- 1		
UV-V	'is		: Ultra Vie			1 - 1						
NMR					tic Resonance							
				magnet								

CONCLUSION

The synthesized azo compounds from the 2aminobenothiazole are beneficial for many applications. The colours of dves of azo compounds have different shades and hence used for dyeing of animal textile fibres, for the chelation. Pharmaceutically acceptable and readily soluble salts, polymeric biodegradable prodrug, antifungal, anthelmintic activities and their dyeing ability, for antioxidant activities. In basic solution azo compounds formed normally from easily dissolvable salts with strong color. Azo derivatives also used as prodrugs. Similarly, these compounds also served as building block for many other applicable final products, now-a-days in pharmaceutical field. The present review paper gives an overview or detailed account of azo-benzothiazole synthesized and its use in various reactions.

The compounds synthesized from the azo derivatives of azo- benzothiazole were valuable for many applications dying industry, for the ion-exchanging properties of polymers. The antibacterial, antifungal and antioxidant activities.

Thus, this review may be beneficial for many researchers for further developments of azo- benzothiazole and their different reactions to give various applied derivatives in near future.

Acknowledgement: Authors are thankful to the Principal, MTES's Smt. G. G. Khadse College, Muktainagar and the Management, also to the Principal, SES's Art and Science College, Bhalod and the Management, for the facility given for the present work.

REFERENCES

- 1. Griess J. P. Vorläufige Notiz über die Einwirkung von salpetriger Säure auf Amidinitro- und Aminitrophenylsäure. Annalen Der Chemie Und Pharmacie 1858; 106(1): 123-125. doi:10.1002/jlac.18581060114.
- 2. Griess J. P., Philos. Trans. R. Soc. London 1864; 164: 693.
- Park C., Lim J., Lee Y., Lee B., Kim S., Lee J., Kim S. Optimization and morphology for decolorization of reactive black 5 by Funalia trogii. Enzy. Microb. Tech. 2007; 40: 1758-1764. doi: 10.1016/j.enzmictec.2006.12.005.
- Chandravadivelu G., Senniappan P. In-vitro antimicrobial activity of novel derivative of azo dye from cyano ester. Int. J. Res. Pharm. Chem. 2011; 1(4): 1082-1086.
- Swati G., Karnawat R., Sharma I. K., Verma P. S. Synthesis, Characterisation and Antimicrobial Screening of Some Azo Compounds. Int J. Appl. Biol Pharma. Techn. 2011; 2(2): 332-338.
- Patil C. J., Patil P. A., Patil P. B., Patil M. C. Coupling Reactions Involving Aryldiazonium Salt: Part-I. Chemoselective Synthesis of 3-Oxo-(substituted-2phenylazo)-butyricacid ethyl ester derivatives and their Antibacterial Activity. Der. Chemica. Sinica. 2015; 6(5): 108-114.
- 7. Patil C. J., Talele D. S., Talele S. P., Pohekar P. R., Patil A. S. Coupling Reactions Involving Reactions of Aryldiazonium

Salt: Part-IV. Chemoselective Synthesize and Antibacterial Activity of 3-(Substituted-phenylazo)-pentane-2,4-done. Int. J. Pharm. Sci. Rev. Res. 2017; 45(1): 64-73.

- Patil C. J., Talele D. S., Talele S. P., Pohekar P. R., Kolhe D. S. Coupling Reactions Involving Reactions of Aryldiazonium Salt: Part-VII. Product of reaction of aryl diazonium chloride with active methylene group containing moiety. J. Pharm. Sci. Res. 2019; 11 (6); 2213-2219.
- 9. Patil C. J., Patil M. C., Rane V., Mahajan K., Nehete C. A. Coupling Reactions Involving Reactions of Aryldizonium Salts: Part-III. Chemoselective condensation with β napthol to Synthesize Sudan-I, its Nitro Derivaties and Antibacterial Potential. Int. J. Chem. Biol. Phy. Envir. Sci. 2015; 5(4): 3860-3867.
- Patil C. J., Waghulade G. P., Patil M. C., Patil Mru. C. Coupling Reactions Involving Reactions of Aryldiazonium Salt: Part-V. Chemoselective Synthesis of 1-(Substitutedphenyl)-azo-naphthalene-2-ol. Int. J. Pharm. Res. Rev. 2017; 45(2): 21-28.
- Patil C. J., Waghulade G. P., Patil M. C. Coupling Reactions Involving Reactions of Aryldiazonium Salt: Part-VI. Chemoselective Condensation with Resorcinol. Int. J. Green Herbal Chem. 2017; 6(2): 5-14. doi: 10.24214/IJGHC/GC/6/2/0514.
- Shridhar A. H., Keshavayya H., Hoskeri H. J., Ras A. Synthesis of some novel bis 1,3,4-oxadiazole fused azo dye derivatives as potent antimicrobial agents. Int. Res. J. Pure Appl. Chem. 2011; 1(3): 119-129. doi: 10.9734/IRJPAC/2011/493.
- Nehete C. A., Patil C. J. Coupling Reactions Involving Reactions of Aryldiazonium Salt: Part-IV. Synthesis of Novel Azo-Aniline from Different Substituted Anilines and study of their Biological Activity. Int. J. Pharma Biol. Arch. 2017; 8 (1): 20-26.
- Heinrich Z., Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments. VCH, Angew. Chem. Int. Ed. 2004; 43: 5290 – 5292, ISBN: 3906390233, 9783906390239.
- 15. Patil, C. J., Nehete C. A. The Azo Derivatives of Salicylic Acid. Int. J. Pharm. Sci. Rev. Res. 2015; 33(2): 248-256.
- 16. Patil C. J., Dhake A. N., Chaudhary G. R. The Coupling Reactions of Aryldiazonium salt: Part-X. Review on Coupling of Aryldiazonium Salt of Aminobenzothiazoles with Aromatic or Heteroaromatic mofits, Orient. J. Chem, 2021.
- Kyriaki G., Ioannis E., Tsatsaroni, E. Colour and dyeing properties of hetarylazo disperse dyes, Visual and instrumental evaluation. Am. J. Appl. Chem. 2014; 2(2): 33-37.
- Keerthi Kumar C. T., Keshavayya J., Rajesh. T and Peethambar S. K., Synthesis, Characterization and Biological Activity of Heterocyclic Azo Dyes Derived from 2-Aminobenzothiozole. Int. J. Pharma. Sci. 2013; 5(1): 296-301.
- Raposo M. Manuela M., Castro R. Cidália M., Fonseca C. Maurício A., Schellenberg P., Belsley M., Design, synthesis, and characterization of the electrochemical, nonlinear optical properties, and theoretical studies of novel thienylpyrrole azo dyes bearing benzothiazole acceptor

groups. Tetrahedron 2011; 67(29): 5189-5198. doi: 10.1016/j.tet.2011.05.053.

- 20. Maliyappa M.R., J Keshavayya, Shoukat Ali R.A, Harisha S, Synthesis, Characterization, Solvatochromic and Biological studies of novel Benzothiazole based azo dyes, J. Chem. and Pharm. Sci., 2017.
- Abood Z. H., Qabel H. A. and Ali H. R., Microwave Synthesis of 2,3-Disubstituted-5-methyl-1,3-imidazolidines-4-one Bearing Benzothiazole Moiety and Elementarily Assessment of Their Antibacterial Action. J. Phy. Conf. Series.2018; 1032: 012058. doi :10.1088/1742-6596/1032/1/012058.
- 22. Bele D. S., Kothari H. and Singhvi I., Synthesis and antimicrobial activity of some Benzothiazole derivatives. Int. J. Pharma. Chem. Sci. 2012; 1(4): 1238-1242.
- Chakraborty A., Saha P. K. and Datta C., Synthesis and application of azo-naphthol dyes on wool, silk and nylon fabric, 7th Int. Conf. TEXSCI, 6-8, Liberec, Czech. Rep. 2010.
- Prakash S., Somiya G., Elavarasan N., Subashini K., Kanaga S., Dhandapani R., Sivanandam M., Kumaradhas P., Thirunavukkarasu C., Sujatha V., Synthesis and characterization of novel bioactive azo compounds fused with benzothiazole and their versatile biological applications. J. Mol. Struct. 2020; 1224: 129016.
- 25. Misra A. and Shahid M., Chromo and Fluorogenic Properties of Some Azo-Phenol Derivatives and Recognition of Hg²⁺ Ion in Aqueous Medium by Enhanced Fluorescence. J. Phys. Chem. 2010; 114: 16726-16739.
- Weaver M. A. and Shuttleworth L., Heterocyclic diazo components. Dyes and Pigments 1982; 3(2): 81-121. doi: 10.1016/0143-7208(82)80016-8.
- Şener N., Gür M., Çavuş M. S., Zurnaci M., and Şener İ., Synthesis, Characterization, and Theoretical Calculation of New Azo Dyes Derived from [1,5-*a*]Pyrimidine-5-one Having Solvatochromic Properties J. Heterocyclic Chem. 2019. DOI 10.1002/jhet.3497.
- Rafael Vasconcelos Oliveira and Valfredo Azevedo Lemos, Chapter 12, Synthesis of a New Sorbent Based on Grafted PUF for the Application in the Solid Phase Extraction of Cadmium and Lead. http://dx.doi.org/10.5772/36501
- 29. Peters A.T., Chisowa E., Disazo disperse dyes derived from 5,6(6,7)-dichloro-2-aminobenzothiazole. Dyes and pigments 1996; 31(2): 131–139. doi:10.1016/0143-7208(95)00097-6.
- Abood Z. H., Hussain N. M. A., Suhail H. A. and Khalaf S. D., Synthesis of some new 1,5-disubstituted tetrazoles from 2-aminobenzothiazole. AIP Conference Proceedings 2020; 2290: 030033. https://doi.org/10.1063/5.0027663.
- Maria-Marcela P., Corneliu C., George M., Tefan T., Luigi S., Coloranþivbenzotiazolici acizi pentru vopsirea suporturilor proteice. Rev. Chim.2007; 58(10): 972-9777.
- 32. Mistry M. H., Parmar S. J., Desai G. C., Synthesis of some heterocyclic compounds and studies of their antimicrobial efficacy. J. Chem. Pharm. Res. 2011; 3 (4): 831-837.
- Dzultharnien N.S.F., Karim Md. R., Zahid N. I., Rahman N.M.M.A., Abdullah I. and Salleh N. M., Optical properties of azo aminobenzo thiazole side chain liquid crystalline

polymers effects of solvents, substituents & taps. J. Fluros. 2019. doi:10.1007/s10895.

- Todor G. D., Dimitar S., Preparation of cationic azo dyes derived from 2-amino-6-(2-chloroethoxy) benzothiazole and 2-amino-4-(2-hydroxyethoxy) benzothiazole. Dyes and pigments.1998; 38(1-3): 115–125.doi:10.1016/s0143-7208(97)00091-0.
- 35. Naoki S. and Toyozo U., Studies on Benzothiazole Derivatives as Chelating Agents, Syntheses of Benzothiazole Derivatives and Their Reactions with Metal Ions. Chem. Pharm. Bull. 1973; 21 (1): 184-190.
- Nagaraja O., Bodke Y. D., Pushpavathi I., Kumar S. R., Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4hydroxy coumarin. heliyon 2020; 6: e04245.
- Sushama P. G., Dorothy A. M. and Alaudeen M., Antimicrobial and Antifungal Activity of Mn (III) Complexes of 2,5-Dihydroxy-3-undecyl-1,4-benzoquinone Derivative. Asian J. Chem. 2007; 19(5): 3403-3406.
- Belmar J., Parra M., Zuâ Nä Iga C., Peâ Rez C., Munä Oz C., New liquid crystals containing the benzothiazol unit: amides and azo compounds. Liquid Crystals 2010; 26(3): 389-396. doi:-10.1080/026782999205164.
- Matsui M., Kamino Y., Hayashi M., Funabiki K., Shibata K., Muramatsu H., Abe Y. and Kaneko M., Fluorine-containing benzothiazolyl bisazo dyes-their application to guest-host liquid crystal displays. Liq. Cryst. 1998; 25(2): 235-240, 1998, doi: 10.1080/026782998206380.
- Peters A. T. & G. Adam, Disperse Dyes: 4-Hetarylazo Derivatives from N-P-Cyanoethyl-N-P-Hydroxyethylaniline. J. Chem. Tech. Biotechnol. 1992; 53: 301-308.
- Georgiadou K. L., Tsatsaroni E. G., Kehayoglou A. H., Synthesis and Characterization of Hetarylazo Disperse Dyes Derived from Substituted N-β-Acetoxyethylanilines— Application on Cellulose Acetate. J. Appl. Polym. Sci 2004; 92: 3479–3483.
- Yahyazadeh A., Yousefi H., Nezhadmehdipour Z., Synthesis, Spectral Characterization and Antimicrobial Activity of Novel Hetarylazoindole Dyes from Some 2-Aminobenzothiazole Derivatives. J. Color Sci. Tech. 2015; 9: 125-133.
- Kumar V., Keshavayya J., Pandurangappab M., Ravi B. N., Synthesis, Characterization and Electrochemical investigations of Azo dyes derived from 2-amino-6ethoxybenzothiazole, Chem. Data Coll. 2018; doi: 10.1016/j.cdc.2018.07.002.
- 44. Ebead Y. H., Salman H. M. A., Khodari M., Ahmed A. A., Spectrophotometric investigations of the role of the organic solvent on the acid dissociation constants of some azo dyes derived from 2-aminobenzothiazole. J. Mol. Liq. 2010; 154: 52–57.
- 45. Nourmohammadian F., Novel Aza-Substituted Benzothiazol and 1,2,4-Triazol Dyes: Synthesis, Characterization and Properties. Prog. Color Colorants Coat. 2013; 6: 37-49.
- 46. Faustino H., El-Shishtawy R. M., Reis L. V., Santos P. F., Almeida P., 2-Nitrosobenzothiazoles: useful synthons for

Available online at www.globalresearchonline.net

[©]Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

new azobenzothiazole dyes. Tetrahedron Letters 2008; 49(48): 6907–6909. doi: 10.1016/j.tetlet.2008.09.096.

- Faustino H., Brannigan C. R., Reis L. V., P. Santos F., Almeida P., Novel azobenzothiazole dyes from 2nitrosobenzothiazoles. dyes and pigments 2009; 83(1): 88– 94. doi: 10.1016/j.dyepig.2009.03.018.
- 48. Jolanta S. G., Harold S. F., A new medium for the diazotization of 2-amino-6-nitrobenzothiazole and 2aminobenzothiazole. dyes and pigments 1992; 20(2): 137– 145. doi:10.1016/0143-7208(92)85006-8.
- Khazal F. A., Hussain J. M. and Khazal H., Novel Cyclic Voltammetry Behavior of 3-Benzothiazol-2-Diazenylnaphthalene-2,7-Diol and Use It for Spectrophotometric Determination of Iron (III) In Blood Sample. J. Phys. Conf. Ser.; 2019: 1294 052005. doi:10.1088/1742-6596/1294/5/052005.
- Shegal L. M., Shegal I. L., and Bednyagina N. P., Research in the Benzazole and Naphthazole Series XXXIII. Unsymmetrical Formazans Containing Substituted Benzothiazole Rings. Plenum Publishing Corporation. 1972; UDC 547.789.6.

Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: editor@globalresearchonline.net New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com

