OPTIMIZED SEPARATION AND QUANTIFICATION OF EUGENOL FROM A TRADITIONAL UNANI MEDICINE JAWARISH-E-BISBSASA USING HPTLC

Sunita Shailajan1,2, Manasi Yeragi1, Anita Purohit1
1F-13, Herbal Research Lab, Ramnarain Ruia College, Matunga (E), Mumbai - 400 019, India.
*Corresponding author’s E-mail: sunitashailajan@yahoo.com

ABSTRACT

Jawarish-e-Bisbsasa (JEB) is a traditional Unani medicine commonly used for clinical treatment of stomach ulcers, weakness of digestion, piles, flatulence, nausea, gastritis and as energy enhancer for stomach. It is a polyherbal preparation containing 10 ingredients which are mainly used as a remedy for many gastric disorders. Though this Unani semi solid formulation enjoys great reputation, its standardization and quality control parameters are not well defined. In this paper an attempt has been made to standardize JEB using modern analytical methods. In-house preparation of JEB was carried out as per traditional Unani Materia Medica. Preliminary phytochemical evaluation of JEB revealed the presence of flavonoids, essential oils, tannins, glycosides, alkaloids and resins. JEB was evaluated for its crude fiber and reducing sugar content. Eugenol is one of the active components found in plant ingredients added during preparation of JEB. A simple, rapid and accurate HPTLC method was developed for quantification of Eugenol from JEB and its ingredients. Method was validated as per ICH guideline and applied for stability studies of JEB stored at different storage periods. A comparative evaluation of JEB prepared in-house was carried out with three available marketed samples in terms of Eugenol content. Evaluation of JEB by these scientific methods may be used as Quality control methods for the Standardization of JEB.

Keywords: Standardization, Jawarish-e-Bisbsasa, HPTLC, Eugenol, Stability study.

INTRODUCTION

In the past decade, there has been renewed attention and interest in the use of traditional medicine (Ayurveda, Naturopathy, Unani, Siddha, and Homeopathy) and Yoga globally. Under the parasol of traditional medicine systems, the Unani system of medicine is also gaining global acceptance due to the amazing clinical efficiency of the formulations.

Tibb-e-Unani (Unani medicine) claims to possess many safe and effective single drugs and compound formulations of herbal, animal and metal origin which are used to cure a wide range of diseases. Unani compound preparations are commonly used in four forms viz. solid (Habb, Qurs, Safooq, Kushta), semi solid (Majoon, Laoq, Marham, Zimaad), liquid (Sheera, Rooh, Sharbat, Tila) and gaseous (Bakhoor, Inkibaab, Ghalia) etc.

Although such Unani medicines have been used since ancient times, there is negligible documented evidence regarding their standardization and quality control. Quality control and quality assurance of such compound traditional formulations relies upon good manufacturing practices with adequate batch to batch analysis and standardized method of preparation. These traditional formulations must confirm test for identity, potency, purity, safety and efficacy as per WHO guidelines. Majoon is a type of semi solid medicinal preparation obtained by mixing powdered drugs in a base of simple syrup (Qwam) made of purified honey, sugar or jaggery. Jawarish is a type of Majoon prepared by mixing coarse powder of drugs to the Quwam.

Jawarish-e-Bisbsasa (JEB) is a polyherbal preparation used as a remedy for many gastric disorders. Formula composition of JEB includes ten medicinal herbs namely Bisbasa (Aril of Myristica fragrans Houtt.), Taj-Qualmi (Stem bark of Cinnamomum tamala Nees & Eberm), Heele-Khurd (Seeds of Elletaria cardamomum Maton), Zanjabeel (Rhzomes of Zingiber officinale Rosc.), Filfil Daraz (Fruits of Piper longum Linn), Darchini (Stem bark of Cinnamomum zeylanicum Blume.), Asaroon (Roots of Asarum europaeum Linn), Qaranfal (Fruits of Syzygium aromaticum (L.) Merr. & Perry), Filfil Siyah (Fruits of Piper nigrum Linn) and Heel-e-Kalan (Seeds of Ammomum subulatum Roxb.).

Due to lack of modern pharmacopoeial standards laid down and followed for processing of JEB, the medicine prepared using the traditional methods may not have desired quality and batch to batch consistency. Hence there is a need for standardization of JEB using modern scientific procedures.

In the present work, quality of raw materials used for preparation of JEB, was assessed using parameters of proximate analysis such as ash values, loss on drying and foreign matter as per standard pharmacopoeial methods. In-house JEB was prepared in the Herbal Research Laboratory of Ramnarain Ruia College, Mumbai as per the classical reference. Preliminary phytochemical evaluation, reducing sugar content and crude fiber content of JEB was evaluated as per standard methods. Many ingredients of JEB are reported to possess antibacterial, antioxidant and gastroprotective activities.
Eugenol is the active constituent present in all the ten ingredients of the formulation22-24 and reported to possess antioxidant25, antibacterial26-27, antifungal28, anthelmintic,29 gastroprotective and hepatoprotective activities30.

A precise, accurate and reproducible HPTLC densitometric method was developed and validated for quantification of Eugenol from the complex matrix of JEB and its ingredients.

Although, quantification of Eugenol from some of the plants and compound preparations using TLC technique have been reported, viz. Aegle marmelos, Trachyspermum ammi, Foeniculum vulgare31, Taj-Qalami22, Qaranfal23, Filfil Siyah24, Amukkara Chumam25, Lavangadi Vati26 etc. but eugenol has not yet been quantified from Bisbasa, Heel-e-Khurd, Zanjabeel, Filfil Daraz, Asaroon, Heel-e-Kalan and JEB. This is the first attempt for quantification of Eugenol from the same.

Stability testing of herbal drug preparations and finished products and its comparison with available marketed formulations is necessary to ensure the quality of the formulation. Stability tests on herbal drug preparations and finished products are a rather new application of HPTLC9. Hence the developed HPTLC method was further applied to study the effect of different storage periods on Eugenol content of JEB. A comparative evaluation of three marketed brands of JEB was carried out with in-house JEB on the basis of respective Eugenol content.

\section*{MATERIALS AND METHODS}

\textbf{Plant Materials:} Raw materials used for the preparation of JEB and three different marketed brands of JEB (M-01, M-02, M-03) were procured from Ratan Gandhi Shop, Pydhonie, Mumbai and authenticated by Herbal Research Lab, Ramnarain Ruia College. Collected materials were dried in oven at 45°C, powdered and sieved through an 85-mesh (BSS) sieve. All the raw materials were stored in an air tight container at ambient temperature.

\textbf{Standard and Reagents:} The organic solvents and chemicals used for extraction under study were of analytical grade and procured from Qualigens Fine Chemicals, Mumbai, India. Standard Eugenol (≥ 98 % purity, \textbf{Figure 1}) was procured from Sigma Aldrich Chemical Company, Germany. Derivatizing reagent i.e. Anisaldehyde Sulphuric acid was prepared as per the standard procedure34.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Structure_of_Eugenol.png}
\caption{Structure of Eugenol}
\end{figure}

\textbf{Proximate analysis of raw materials:} To assess the quality of raw materials, proximate parameters like ash values (total ash, acid insoluble ash and water soluble ash), loss on drying and foreign matter were determined using standard pharmacopoeial methods as per WHO guidelines10.

\textbf{Preparation of JEB:} JEB was prepared as per classical reference using traditional formula composition (Table 1). Qiwarm (base for Jawarish) of one Tar consistency was prepared using Aab (Water), Qand Safaid (Sugar) and Asal (Honey). As per the formula composition, all the ingredients of pharmacopoeial quality and quantity except Qand Safaid and Asal were taken and mixed thoroughly. The mixture was then added into the prepared Qiwarm (when hot), homogenized, cooled to room temperature and packed in air tight container for further analysis.

\begin{table}[h]
\centering
\caption{Formula composition for JEB}
\begin{tabular}{|c|c|c|}
\hline
Sr. No. & Unani Name & botanical Identity & Quantity \\
\hline
1 & Bisbasa & Aril of Myristica fragrans Houtt. & 1 part \\
2 & Taj-Qalami & Stem bark of Cinnamomum tamala Nees & Eberm & 1 part \\
3 & Heel-e-Khurd & Seeds of Elletaria cardamomum Maton & 1 part \\
4 & Zanjabeel & Rhizomes of Zingiber officinale Rosc. & 1 part \\
5 & Filfil Daraz & Fruits of Piper longum Linn & 1 part \\
6 & Darchini & Stem bark of Cinnamomum zeylanicum Blume. & 1 part \\
7 & Asaroon & Roots of Asarum europaeum Linn & 1.5 part \\
8 & Qaranfal & Fruits of Syzygium aromaticum (L.) Merr. & Perry & 2 part \\
9 & Filfil Siyah & Fruits of Piper nigrum Linn & 5 part \\
10 & Heel-e-Kalan & Seeds of Ammomum subulatum Roxb. & 25 part \\
11 & Qand Safaid & Sugar & 25 part \\
12 & Asal & Honey & 1 part \\
\hline
\end{tabular}
\end{table}
Preliminary phytochemical evaluation: Phytoconstituents in JEB were evaluated by performing preliminary phytochemical tests for flavonoids, essential oils, tannins, glycosides, alkaloids and resins as per standard methods.11

Physicochemical evaluation: JEB was also subjected to physicochemical evaluation. Crude fiber and reducing sugar content of JEB was determined using Dutch method12 and DNSA method13 respectively.

Chromatographic evaluation

HPTLC conditions: Chromatographic separation was achieved on HPTLC plates (20 X 20 cm) precoated with silica gel 60 F254 (E. Merck) of 0.2 mm thickness with aluminum sheet support. Samples were spotted using CAMAG Linomat IV Automatic Sample Spotter (Camag Muttenz, Switzerland) equipped with syringe (Hamilton, 100 µL). Plates were developed in a glass twin trough chamber (CAMAG) pre-saturated with mobile phase. Scanning device used was CAMAG TLC Scanner 2 equipped with winCATS software. The experimental condition was maintained at 20 ± 2°C.

Preparation of Standard solutions of Eugenol: Stock solution of Eugenol (1000 µg mL⁻¹) was prepared by dissolving 10 mg of accurately weighed standard in methanol and making up the volume to 10 mL in standard volumetric flask. Aliquot of 40-180 µg mL⁻¹ was prepared from this stock solution for calibration curve of Eugenol. Further three quality control samples (LQC: MQC: HQC) of Eugenol (50, 85 and 145 µg mL⁻¹), were prepared for precision, accuracy and ruggedness studies.

Extraction of Phytoconstituents from JEB, its ingredients and marketed samples: Extraction of phytocconstituents from JEB was optimized to achieve good fingerprinting and also to resolve the marker compound Eugenol efficiently. To the accurately weighed JEB (1 g), 10 mL of methanol was added, vortexed for 1-2 minutes and kept standing overnight at room temperature. Next day it was filtered through Whatmann filter paper No. 41(E. Merck, Mumbai, India) and the filtrate was further used for HPTLC analysis. Similar extraction procedure was followed for ingredients of JEB and its marketed samples.

Solvent system: Solvent system consisting of Toluene: Ethyl Acetate: Glacial Acetic Acid (8: 2: 0.1, v/v/v) was used to resolve and quantify Eugenol from the matrix of JEB, its ingredients and available marketed samples.

Method Validation: ICH guidelines were followed for the validation of the developed analytical method (CPMP/ICH/281/95 and CPMP/ICH/381/95).

Specificity: Specificity was ascertained by analyzing standard compound with sample. The band of Eugenol from sample solution was confirmed by comparing its Rf and spectra with that from standard. The peak purity of all the compounds was analyzed by comparing the spectra at three different levels, i.e. start, middle, and end positions of the bands.

Instrumental Precision and Repeatability: Instrumental precision was checked by repeated scanning (n = 7) of the same spot of Eugenol (50 µg mL⁻¹) and further expressed as relative standard deviation (% RSD). The repeatability of the method was affirmed by analyzing 50 µg mL⁻¹ of Eugenol on a HPTLC plate (n = 5) and expressed as % RSD.

Inter-Day and Intra-Day Precision: Variability of the method was studied by analyzing Quality control samples of Eugenol (50, 85 and 145 µg mL⁻¹) on the same day (intra-day precision, n = 3) and on different days (interday precision, n = 3). The results were expressed as % RSD.

Limit of Detection and Limit of Quantitation: Limit of detection (LOD) and limit of quantitation (LOQ) of the developed method was affirmed by analyzing progressively low concentrations of Eugenol along with methanol as blank. Limit of detection (LOD) and limit of quantitation (LOQ) were established at a signal to noise ratio of 3:1 and 10:1 respectively.

Assay of Eugenol from JEB, ingredients of JEB and marketed samples: Sample solution (10 µL) of each was applied in triplicate to a pre-coated silica gel 60 F254 HPTLC plate (E. Merck) with the Camag Linomat 3 sample spotter. The plate was developed in above mentioned mobile phase, air dried and derivatized with Anisaldehyde Sulphuric acid reagent. Scanning of the plate was done at 550 nm.

Recovery: The accuracy of the method was assessed by performing recovery studies at three different levels (25, 50 and 100 %). Appropriate concentrations of Eugenol were spiked into JEB matrix and then each was analyzed as per the developed method. The percent recoveries at each level were calculated to deduce average percent recovery.

Ruggedness: Ruggedness of the method was assessed by deliberately incorporating the small variations in the optimized chromatographic condition. Effect of change in analyst, change in mobile phase composition [Toluene: Ethyl Acetate: Glacial Acetic Acid (8: 2: 0.1, v/v/v)] and Toluene: Ethyl Acetate: Glacial Acetic Acid (7.9: 2.1: 0.1, v/v/v)] and change in spotting volume (9 µL and 11 µL) on the response and Rf of quality control samples was observed.

Method application: The developed HPTLC method was applied further to study the stability of JEB samples stored at different storage periods. Comparative evaluation of in-house JEB was carried out with three marketed brands (M-01, M-02 and M-03) in terms of their respective Eugenol content using developed method.

RESULTS AND DISCUSSION

Quality assurance is an integral part of all systems of medicine to ensure quality medicament. Thus, there is an urgent need to evaluate such parameters which can be adopted by the pharmaceutical industries. There are reports on standardization of some popular Unani medicines.2, 3, 5.
In the communication an attempt has been made to standardize the raw materials as well as finish product of JEB using modern scientific procedures. The results for proximate analysis of raw materials for parameters like ash values (total ash, acid insoluble ash and water soluble ash), loss on drying and foreign matter were found in compliance with pharmacopoeial limits (data not shown).

Preliminary phytochemical evaluation of JEB revealed presence of all the phytoconstituents studied. Crude fiber and reducing sugar content of JEB was determined using standard methods and it was found to be 0.707 ± 0.003 % and 73.717 ± 0.680 % respectively.

Of the various solvent systems tried, mixture containing Toluene: Ethyl Acetate: Glacial Acetic Acid (8: 2: 0.1, v/v/v) gave the best resolution for Eugenol (Rt = 0.56) from the plant matrix which enabled its quantification as well as phytochemical fingerprint (Figure 2). The identity of the band of Eugenol in JEB and its ingredients was confirmed by their UV absorption spectra with that of the standard (Figure 3).

Figure 2: Detection of Eugenol from JEB and its ingredients at 550 nm using HPTLC

![HPTLC Image](image)

Figure 3: Specificity of the method showing absorption spectra of Eugenol from JEB and its ingredients

Pharmacologically active phytoconstituent Eugenol was quantified from JEB by HPTLC densitometric method and it was validated in terms of precision, repeatability and accuracy as per ICH guidelines (Table 2). Response for Eugenol was found to be linear in the range of 40-180 µg mL⁻¹ with a correlation coefficient (r² value) of 0.998 (Figure 4) which resulted in a regression equation y = 21.29x - 322.3. This regression equation was then used to determine respective Eugenol content of JEB, its ingredients and, marketed samples. The assay results of the same are represented in Table 3, 4, 5. Developed TLC densitometric method was found to be precise with % RSD in the range of 0.65-0.91 and 1.31-1.57 for intra-day precision and inter-day precision respectively for studied Quality control samples of Eugenol (Table 6). This indicates that the method is precise.

Table 2: Method Validation parameters for Eugenol

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental precision (% RSD, n = 7)</td>
<td>0.81</td>
</tr>
<tr>
<td>Repeatability (% RSD, n = 5)</td>
<td>0.75</td>
</tr>
<tr>
<td>Linear Working Range (µg mL⁻¹)</td>
<td>40 to 180</td>
</tr>
<tr>
<td>Regression equation</td>
<td>y = 21.29x - 322.3</td>
</tr>
<tr>
<td>Correlation coefficient (r²)</td>
<td>0.998</td>
</tr>
<tr>
<td>LOD (µg mL⁻¹)</td>
<td>20</td>
</tr>
<tr>
<td>LOQ (µg mL⁻¹)</td>
<td>40</td>
</tr>
<tr>
<td>Specificity</td>
<td>Specific</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>Rugged</td>
</tr>
</tbody>
</table>

Table 3: Eugenol content in ingredients of JEB

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Eugenol content (mg/g) [Mean (n=3) ± S. D.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisbasa</td>
<td>0.7755 ± 0.0151</td>
</tr>
<tr>
<td>Taj-Qualmi</td>
<td>0.9784 ± 0.0132</td>
</tr>
<tr>
<td>Heel-e-Khurd</td>
<td>1.4402 ± 0.0062</td>
</tr>
<tr>
<td>Zanjabeel</td>
<td>1.9666 ± 0.0044</td>
</tr>
<tr>
<td>Filfil Daraz</td>
<td>0.4509 ± 0.0033</td>
</tr>
<tr>
<td>Darchini</td>
<td>1.7229 ± 0.0024</td>
</tr>
<tr>
<td>Asaroon</td>
<td>1.7433 ± 0.0087</td>
</tr>
<tr>
<td>Qaranfal</td>
<td>5.4002 ± 0.0026</td>
</tr>
<tr>
<td>Filfil Siyah</td>
<td>0.6826 ± 0.0021</td>
</tr>
<tr>
<td>Heel-e-Kalan</td>
<td>0.9375 ± 0.0026</td>
</tr>
</tbody>
</table>

Table 4: Stability study of JEB

<table>
<thead>
<tr>
<th>Storage period (Months)</th>
<th>Eugenol content (mg/g) [Mean (n=3) ± S. D.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4689 ± 0.0137</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8730 ± 0.0059</td>
</tr>
<tr>
<td>1</td>
<td>1.7632 ± 0.0097</td>
</tr>
<tr>
<td>2</td>
<td>2.7600 ± 0.0038</td>
</tr>
<tr>
<td>3</td>
<td>2.8736 ± 0.0026</td>
</tr>
<tr>
<td>4</td>
<td>2.9447 ± 0.0048</td>
</tr>
<tr>
<td>5</td>
<td>3.1567 ± 0.0052</td>
</tr>
<tr>
<td>6</td>
<td>3.8637 ± 0.0031</td>
</tr>
</tbody>
</table>
Table 5: Comparative evaluation of In-House JEB with Marketed Samples

<table>
<thead>
<tr>
<th>Samples (stored for 6 months)</th>
<th>Eugenol content (mg/g) [Mean (n=3) ± S. D.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-House</td>
<td>3.8637 ± 0.0031</td>
</tr>
<tr>
<td>M-01</td>
<td>0.6244 ± 0.0094</td>
</tr>
<tr>
<td>M-02</td>
<td>0.4791 ± 0.0071</td>
</tr>
<tr>
<td>M-03</td>
<td>0.5027 ± 0.0111</td>
</tr>
</tbody>
</table>

Table 6: Precision studies for Eugenol from JEB

<table>
<thead>
<tr>
<th>Concentration (µg mL⁻¹)</th>
<th>Intra-day (% RSD)</th>
<th>Inter-day (% RSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.85</td>
<td>1.42</td>
</tr>
<tr>
<td>85</td>
<td>0.91</td>
<td>1.31</td>
</tr>
<tr>
<td>145</td>
<td>0.65</td>
<td>1.57</td>
</tr>
</tbody>
</table>

LOD and LOQ value for Eugenol was found to be 20 and 40 µg mL⁻¹ respectively (Table 3). Average recovery at three different levels of Eugenol was found to be 99.45 % (Table 7). Ruggedness of the method for change in analyst and change in mobile phase composition showed variations within acceptable limits. Change in spotting volume at 9 and 11 µL did not affect the Rf of Eugenol but change in response was observed which was within acceptable limits.

Increase in Eugenol content was observed for the stability samples stored at different storage periods (Table 4). The results of stability studies are supported by the frequent references in Unani Pharmaceutical Methods regarding use of Jawarish. Eugenol content was maximum in the in-house JEB sample when compared with other marketed formulations (Table 5).

Such reproducible modern techniques can make the traditional medicines more acceptable in the local and global market. Thus rationally designed, carefully standardized, synergistic traditional herbal formulations and botanical drug products with robust scientific evidence can also be alternative to modern medicine.

Table 7: Recovery studies for Eugenol from JEB

<table>
<thead>
<tr>
<th>Amount of Eugenol</th>
<th>Recovery (%)</th>
<th>Accuracy (average % recovery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present in JEB (µg mL⁻¹)</td>
<td>Added in JEB (µg mL⁻¹)</td>
<td>Amount found (µg mL⁻¹)</td>
</tr>
<tr>
<td>46.89</td>
<td>0</td>
<td>46.56</td>
</tr>
<tr>
<td>46.89</td>
<td>11.72</td>
<td>59.12</td>
</tr>
<tr>
<td>46.89</td>
<td>23.45</td>
<td>71.25</td>
</tr>
<tr>
<td>46.89</td>
<td>46.89</td>
<td>90.35</td>
</tr>
</tbody>
</table>

CONCLUSION

Present results can be used as a quality control method for characterization of Unani compound samples in industry to check their uniformity. The obtained values of physical and chemical parameters for the finished product can be adopted to lay down new pharmacopoeial standards to be followed in the traditional preparation of JEB with batch to batch consistency. The developed HPTLC method for the quantification of Eugenol can be applied to various polyherbal formulations containing Eugenol. A routine use of such scientific techniques will lead to standardization of the Unani medicine to a certain extent and would definitely help in building confidence in use of these products.

Acknowledgement: Authors are thankful to Dr. Sharique Zafar for his help and support.

REFERENCES
