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ABSTRACT 

The problem of non-Newtonian and non-linear blood flow through a stenosed artery is solved numerically where the non-
Newtonian rheology of the flowing blood is characterized by the generalized Power-law and Herschel-Bulkley fluid models. The 
equations governing the flow of the proposed model are solved and closed form expressions for the blood flow characteristics, 
namely, velocity profile, volumetric flow rate, pressure gradient, resistance to flow, wall shear stress and apparent viscosity are 
derived. The effects of various parameters entering into problem are discussed with the help of graphs. It has been found that the 
wall shear stress and resistance to flow increases with the non-Newtonian behavior index of the blood as well as tube radius for 
constant value of the stenosis height for both fluid models but these increases are comparatively small in Power-law fluid model. 
Hence, it appears that Herschel-Bulkley fluid model would be more helpful in the functioning of diseased arterial circulation. 

Keywords: Herschel-Bulkley fluid model, Power-law fluid model, stenosed artery, Resistance to flow, Non-Newtonian fluid. 

 
INTRODUCTION 

The intimal thickening of stenotic artery was understood 
as an early process in the beginning of atherosclerosis. 
Atherosclerosis is a leading cause of death in many 
countries. There is considerable evidence that vascular 
fluid dynamics plays an important role in development 
and progression of arterial stenosis, which is one of the 
most widespread diseases in human beings. A Newtonian 
fluid, by definition, is one in which the coefficient of 
viscosity is constant at all rates of shear. Homogeneous 
liquids may behave closely like Newtonian fluids. 
However, there are fluids that do not obey the linear 
relationship between shear stress and shear strain rate. 
Fluids that exhibit a non-linear relationship between the 
shear stress and the rate of shear strain are called non-
Newtonian fluids. Blood behaviour is referred to as non-
Newtonian properties. These properties are of two types 
as follows: (a) at low shear rates, the apparent viscosity 
increases markedly – Sometimes even a certain “yield 
stress” is required for flow. (b) In small tubes, the 
apparent viscosity at higher rates of shear is smaller than 
it is in larger tubes. These two types of anomalies are 
often referred to as “low shear” and “high shear” effects 
respectively. It is thus concluded that the behaviour of 
blood is almost Newtonian at high shear rate, while at 
low shear rate the blood exhibits yield stress and non-
Newtonian behaviour. In the series of the papers, [Texon, 
(1); May et al., (2); Hershey and Cho, (3); Young, (4); 
Forrester and Young, (5); Caro et al., (6); Fry (7) Young 
and Tsai, (8); Lee, (9); Charm et al., (10)] the effects on 
the cardiovascular system can be understood by studying 
the blood flow in its vicinity. In these studies the behavior 
of the blood has been considered as a Newtonian fluid. 
However, it may be noted that the blood does not behave 
as a Newtonian fluid under certain conditions. It is 

generally accepted that the blood, being a suspension of 
cells, behaves as a non-Newtonian fluid at low shear rate 
[Hershey et al., (11) Whitemore, (12); Cokelet, (13); Lih, 
(14); Shukla et al. (15)]. It has been pointed out that the 
flow behaviour of blood in a tube of small diameter (less 
than 0.2 mm) and at less than 20sec-1 shear rate, can be 
represented by a power-low fluid. It has also been 
suggested that at low shear rate (0.1 sec-1) the blood 
exhibits yield stress and behaves like a Casson-model fluid 
[Casson, (16); Reiner and Scott-Blair, (17)]. For blood 
flows in large arterial vessels (i.e., vessel diameter ≥1mm) 
[Labarbera, (18), Devid, (23), Shalmanab (25)] which can 
be considered as a large deformation flow, the 
predominant feature of the rheological behavior of blood 
is its shear rate dependent viscosity, and its fact on the 
hemodynamics of large arterial vessel flows has not been 
understood well. In this paper we investigated the effect 
of stenosis on the resistance to flow, apparent viscosity 
and wall shear stress in an artery by considering the blood 
as a power-law fluid and Casson’s-model fluids. And to 
examine the effect of stenosis shape parameter, we 
considered blood flow through an axially non-symmetrical 
but radially symmetric stenosis such that the axial shape 
of the stenosis can be change just by varying a parameter 
‘m’. 

ANALYSIS OF THE PROBLEM 

In the present analysis, it is assumed that the stenosis 
develops in the arterial wall in an axially non-symmetric 
but radially symmetric manner and depends upon the 
axial distance z and the height of its growth. In such a 
case the radius of artery, R(z) can be written as follows 
[Fig (1)]:  
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where R(z) and R0 is the radius of  the artery with and 
without stenosis, respectively. L0 is the stenosis length 
and d indicates its location, m ≥ 2 is a parameter 
determining the stenosis shape and is referred to as 
stenosis shape parameter. Axially symmetric stenosis 
occurs when m = 2, and a parameter A is given by; 

m /(m -1)

m
0 0

δ mA =
R L (m - 1)

, where δ denotes the maximum 

height of stenosis at z = d + L0 / m1 / (m – 1).  

  L
oL d

'Z axis

'r axis

 
Figure 1:    Stenotic Artery 

The equation of motion for laminar and incompressible, 
steady, fully-developed, one-dimensional flow of blood 
whose viscosity varies along the radial direction in an 
artery reduces to [Young, (4)]: 

P 1 ( r τ )0 ,
r r z
P0 ,
r

       


  
 

                (2) 

where (z, r) are co-ordinates with z measured along the  
axis and r measured normal to the axis of the artery.  

Following boundary conditions are introduced to solve 
the above equations, 

0

L

u / r  =  0          a t  r  =  0
u  =  0                a t  r  =  R (z )

   is  f in i te        a t  r  =  0         
P  =  P              a t  z  =  0

P  =  P              a t  z  =  L

τ

 








            (3) 

 

Case-1: Power-law Fluid Model: Non-Newtonian fluid is 
that of power-law fluid which have constitutive equation, 

c

1 / n
d u = f ( ) ,
d r µ

Rd pw h e r e  τ
d z 2

τ τ
            
    

  

       (4) 

Where u is the axial velocity, µ is the viscosity of fluid, (-
dp/dz) is the pressure gradient and n is the flow 
behaviour index of the fluid. 

Solving for u from equation (2), (4) and using the 
boundary conditions (3), we have, 

C

1 /n
1 /nd u P= [(r - R ) ],

d r 2 µ
 
 
 

   (5) 

The volumetric flow rate Q can be defined as, 

R R

0 0

d uQ 2 π u r d r π r d r ,
d r

      
 

  (6) 

By the help of equations (5) and (6) we have,  

[(1 /n ) 1 ]1 /nP n πQ ( ) (R )
2 µ (3 n 1 )

 
   

   (7) 

From equation (7) pressure gradient is written as follows, 

n

3 n 1

d p (3 n 1 ) 12 µ Q
d z nπ (R ) 

    
 

        (8) 

Integrating equation (8) using the condition P = P0 at z = 0 
and P = PL at z = L. We have, 

   

n L

L 3n +10 1 3n00
0

(3n 1) 2µ dzP P Q
nπ R R/R


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  (9) 

The resistance to flow (resistive impedance) is denoted by 
λ and defined as follows: 

L 0P - P
λ =

Q
            (10) 

The resistance to flow from equation (10) using equations 
(9) can write as: 

 
n d Ld L0

3n 1 3n 10 0 0 d L00 0

(3n 1)Q 2µ dzλ dz dz
nπ QR R R



 

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             

 

    (11) 

When there is no stenosis in artery then R = R0, the 
resistance to flow,   

n

3n 1N
0

(3 n 1) 2µλ Q L
nπ Q R 
   

 
              (12) 

From equation (11) and (12) the ratio of (0 / N) is given 
as; 

 

d L 00 0
3n 1

0N d R /R

λ L 1 dzλ = 1
λ L L



   
        (13) 

Now the ratio of shearing stress at the wall can be written 
as; 
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Fig.2 reveals the variation of resistance to flow () with 
stenosis size (/R0) for different values of flow behavior 
index (n). It is observed that the resistance to flow 
increases as stenosis size increases. It is also noticed here 
that resistance to flow increases as flow behavior index n 
increases. It is seen from the Fig.2, Fig.3 that the ratio is 
always greater than 1 and decreases as n decreases from 
unity. This result is similar with the result of [Shukla, et 
al., (15)]. In Fig.3, resistance to flow decreases as stenosis 
shape parameter increases and maximum resistance to 
flow occurs at (m = 2), i. e. in case of symmetric stenosis. 
This result is therefore consisting to the result of [Haldar, 
(19)]. In Fig.4 the variation of wall shear stress () with 
stenosis length for different values of flow behavior index 
n has been shown. This figure depicts that wall shear 
stress increases as stenosis length increases. Also it has 
been seen from this graph that the wall shear stress 
increases as value of flow behavior index n increases. As 
the stenosis grows, the wall shearing stress increases in 
the stenotic region. It is also noted that the shear ratio 
given by (15) is greater than one and decreases as n 
decreases (n < 1). These results are similar with the 
results of [Shukla, et al., (15)]. Fig.5 shows the variation of 
wall shear stress with stenosis size for different values of 
flow behavior index n. This figure depicts that wall shear 
stress increases as stenosis size increases. Also it has been 
seen from this graph that the wall shear stress increases 
as value of flow behavior index n increases. These results 
are consistent to the observation of [Shukla, et al., (15)].  
It is also seen that the shear ratio is always greater than 
one and decreases as n decreases. For /R0 = 0.1 the 
increases in wall shear due to stenosis is about 37% when 
compared to the wall shear corresponding to the normal 
artery in the Newtonian case (n = 1), but for n = 2/3 this 
increase is only 23% approximately. However, for /R0 = 
0.2, the corresponding increase in Newtonian (n = 1) and 
non-Newtonian (n = 2/3) cases are 95% and 56% 
respectively.  

 
Figure 2:  Variation of resistance to flow with 
 stenosis size for different values of n 

 
Figure 3:  Variation of resistance to flow with stenosis 
shape parameter for different values of n  

 

 
Figure 4: Variation of wall shear stress with stenosis 
length for different values of flow behavior index (n) 

 

 
Figure 5: Variation of wall shear stress with stenosis size 
for different values n  
 
Case-2: Herschel-Bulkley Fluid Model- The stress-strain 
relation of Herschel-Bulkley fluid is given as: 

 
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  (16) 

and µ  denotes  Herschel-Bulkley viscosity  coefficient,  o  
is  yield  stress,    is  shear  stress,  Rc  is  the  radius  of  
the  plug-flow  region,  u  is  the  axial  velocity  along the  
z direction and n is the flow behavior index. The relation 
correspond to the vanishing of the velocity gradients in 
regions, in which the shear stress τ is less than the yield 
stress τo this implies a plug flow wherever τ ≤ τo when the 
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shear rates in the fluid are very high, τ ≥ τo, the power-law 
fluid behavior is indicated. 

By equation (1) and (3) we get,    

 
1/ n

1/ n
c

du p= - r - R ,
dr 2 µ

           
           (17) 

the flow of flux, Q, is defined as, 

 
R R 2

0 0
Q= 2 p u r dr = p r - (d u /d r) dr,  (18)                                                                   

substituting  the  value  of  f ()  from  equation  (1)  in  
equation  (7), 
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n

(1 + 3 n )
dp 2 µ 2Q 1P = - = (1 + )ndz π f (y)R

  
   
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      (20) 

to  determine  λ,  we  integrate  equation  (11)  for  the  
pressure  PL  and  Po  are  the  pressure  at  z = 0  and  z = L,  
respectively,  where  L  is  the  length  of  the  tube.  

    

n

1+3n (1+3n)L n0
00 0

2µ dz1ΔP=P -P = 2Q +1nπ R (R(z)/R ) f(y)

L


    (21) 

The resistance to flow is given by the coefficient λ is 
defined as follows:    

L 0λ = (P - P /Q)             (22) 

1+3 n0
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When there is no stenosis in artery then R = R0, the 
resistance to flow,   

n1+3nN
00

n12Q (1 + )2 µ Lnλ =
π (f )R

 
  
 

            (24) 

from  equation  (12)  and  (13)  the  ratio  of  ( / N ) is 
given  as: 

d + Ln 0
0 0 0

1+3 n n
d oN

L (f ) dzλ = = 1 - +
L L (R(z)/R ) f(y)



 
    (25) 

The apparent viscosity (0/) is defined as follow:   

0

1+3 n
appµ = (1/(R(z)/R ) f(y))             (26)  

Fig.6 shows the variation of resistance to flow () with 
stenosis shape parameter (m) for stenosis size (/R0). It is 
seen from the figure that the resistance to flow decreases 
as stenosis shape parameter m increases (for n=1/3). 
Maximum resistance to flow occurs at m = 2. i e. in the 
case of symmetric stenosis. This result is therefore 
consistent with the observation of [Mishra, (26)]. Fig.7 
depicts the variation of wall shear stress with stenosis 
length (L0/L) for different values of stenosis shape 
parameter. Figure shows that wall shear stress increases 
as stenosis length increases and decreases as stenosis 
shape parameter increases (for n=2/3). This result is 
qualitative agreement with [19]. Fig.8 represents 
variation of apparent viscosity with stenosis shape 
parameter (for n=1/3). Figure depicts that apparent 
viscosity decreases as stenosis shape parameter increases 
but this increase is less due to non-Newtonian behaviour 
of the blood. In addition it may be noted from the graph 
that the apparent viscosity increases as Stenosis size 
increases. This result is in qualitative agreement with the 
result of [Pontrelli, (20)]. It may be observed that from 
these results that the apparent viscosity increases as the 
stenosis grows and remains constants outside from the 
stenotic region. Fig.9 shows the variation of apparent 
viscosity with stenosis length for different values of 
stenosis shape parameter (m). We observe that the 
apparent viscosity sharply increases as length of stenosis 
increases.  

 
Figure 6:  Variation of resistance to flow with shape 
parameter for different values of stenosis size 

 
Figure 7: Variation wall shear stress with stenosis length 
for different values of shape parameter 
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Figure 8: Variation of apparent viscosity with 
stenosis shape parameter for different values of stenosis 
size decreases as stenosis shape parameter m increases 
for (n=2/3). [Tandon, et al., (21)] have also noted the 
same results. 

 

Figure 9: Variation of apparent viscosity  
with Lo/L for different values of stenosis shape parameter 

CONCLUSION 

In this paper, we have studied the effects of the stenosis 
in an artery by considering the blood as power-law and 
Herscel-Bulkley fluid model. It has been concluded that 
the resistance to flow and wall shear stress increases as 
the size of stenosis increases for a given non-Newtonian 
model of the blood. The flow resistance decreases with 
increasing values of shape parameter ‘m’ and attains its 
maximal in the symmetric stenosis case (m=2) for any 
given stenosis size. Thus the increasing value of the shape 
parameter would cause a considerable increase in the 
flow of blood. It has been found that the wall shear stress 
and resistance to flow increases with the non-Newtonian 
behavior index of the blood as well as tube radius for 
constant value of the stenosis height for both fluid 
models but these increases are comparatively small in 
Power-law fluid model. Hence, it appears that Herschel-
Bulkley fluid model would be more helpful in the 
functioning of diseased arterial circulation.   
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