AN UPDATED REVIEW ON TRICOSANTHES CUCUMERINA L

*Sandhya S, Vinod K.R, J. Chandra Sekhar, R Aradhana, Yamshi Sarath Nath
Department of Pharmacognosy, Nalanda college of Pharmacy, Nalgonda (dt), AP, India - 508001
*Email: sanpharm@gmail.com

ABSTRACT
The universal role of plants in the treatment of diseases is established by their employment in all important systems of medicine. There are many herbs on earth which lies unexplored in the field of medicine or Science. One such plant is Trichosanthes cucumerina which is known as snake gourd, viper gourd, snake tomato or long tomato. The fruit is usually consumed as a vegetable due to its good nutritional value. The plant is rich in flavonoids, carotenoids and phenolic compounds. Trichosanthes cucumerina has a promising place in the Ayurvedic and Siddha system of medicine due to its various medicinal values like antidiabetic, hepatoprotective, cytotoxic, anti inflammatory, larvicidal effects. In the present review the complete update on the plant has been enlightened to bring out the hidden medicinal values of the plant.

Key Words: Trichosanthes cucumerina, cucurbitacin, hydragogue, hemagglutinant, anti-ovulatory.

INTRODUCTION
A complete understanding of medicinal plants involves a number of factors like botany, chemistry, genetics, quality control and pharmacology. In addition there is a large wealth of knowledge in the medicinal and other properties of plants from generation to generation by the tribal societies. Trichosanthes cucumerina is a well known plant, the fruit of which is mainly consumed as a vegetable. It is an annual climber belonging to the family Cucurbitaceae. It is commonly called as snake gourd, viper gourd, snake tomato or long tomato. The fruit is usually consumed as a vegetable due to its good nutritional value. The plant is richly constituted with a series of chemical constituents like flavonoids, carotenoids, phenolic acids which makes the plant pharmacologically and therapeutically active. It has a prominent place in alternative systems of medicine like Ayurveda and Siddha due to its various pharmacological activities like antidiabetic, hepatoprotective, cytotoxic, anti inflammatory, larvicidal effects.

Trichosanthes cucumerina falls under the scientific classification of

Kingdom: Plantae
Division: Magnoliophyta
Class: Magnoliopsida
Order: Curcubitales
Family: Cucurbitaceae
Genus: Trichosanthes
Species: Cucumerina

The regional names of snake gourd or snake tomato is called in Bengali as Chichinga/ Chichinge, in Telugu as potlakaya, in Tamil as pulalankaai, in Kannada as aduvalakaya, in Malayalam as padavulanga, Galartori in Punjabi, padavali in Gujarathi, Chancha in Hindi. In other nations it is commonly called as serpent vegeatil in France, Schlangengurke in Germany, Karasu-uri-zoku in Japan, Patola in Srilanka, Zucchetta cinese in Italy, Abóbora-serpente in Portugal, Käärmekurkku in Finland, Buap ngu Ma noi in Thailand, Yilan kabagi in Turkey, Calabaza anguina in Spain.

Description
Trichosanthes cucumerina is a monoecious annual herb climbing by 2–3-branched tendrils upto 5 to 6 meters high or less. The stems are slender, green, 4-angled, somewhat hairy, and faintly disagreeable in odor. The roots are somewhat tuberous and whitish. The leaves are alternate, simple with no stipules. Leaves are scabrid hairy on both surfaces, rounded in outline, 7 to 14 centimeters long and broad, and 3 or 5-lobed, the lobes being broad, rounded or obtuse, and the sinuses broad or narrow and rounded. The base is broadly heart-shaped. The staminate inflorescences are long-peduncled and axillary, with six to fifteen flowers. Flowers are unisexual, regular, and white in colour with green and hairy calyx. Corolla is tubular in shape with lobes fringed and hairlike outgrowths. The male flowers are many-flowered with axillary racemes on 10–30 cm long peduncles. They are with 3 stamens but the female flowers are solitary and sessile with inferior, single celled ovary, long and with hairy stigmas. Fruits are very slender, long and cylindrical berry, often twisted, greenish-white when immature, dark red when mature. The seeds are half-ellipsoid, somewhat compressed, undulate, hard, rugose, nearly one centimeter long, greyish-brown, sculptured, margin undulate and imbedded in a soft foetid with red pulp.

Origin and distribution
The genus Trichosanthes is native to Southern and Eastern Asia, Australia and Islands of the western Pacific. Trichosanthes cucumerina is found wild throughout these areas. It was probably domesticated in ancient times in India. It is grown as a minor vegetable in many countries of tropical Asia. It is locally grown as a vegetable in home gardens in Africa. Commercial growers round about big cities in East Africa occasionally grow cultivars of snake gourd imported from India for people of Indian origin. It is also reported from India through Malaya to tropical Australia.
Trichosanthes cucumerina is a newly introduced crop of increasing importance in several parts of Africa, including Ghana and Nigeria. The genus Trichosanthes comprises about 100 species, of which a few have been domesticated in Asia, snake gourd being the most important. Two varieties are distinguished within Trichosanthes cucumerina. They are the wild var. cucumerina occurring from India, Sri Lanka and China, through South-East Asia, to northern Australia, and the cultivated var. anguina (L.). Only traditional landraces of Trichosanthes cucumerina are used in West and Central Africa, whereas improved cultivars from India are grown in East Africa. It is distributed in temperate Asian regions like China, tropical regions of Bangladesh, India, Nepal, Pakistan Sri Lanka, Myanmar; Vietnam, Indonesia; Malaysia; Philippines; in Australia it is found in Northern Territory, Queensland and in Western Australia.

Phytochemicals

Tricosanthes cucumerina is a rich source of nutrition. It is highly constituted with proteins, fat, fibre, carbohydrates, vitamin A and E. The total phenolics and flavonoids content is 46.8% and 78.0% respectively. The fruit is rich in Vitamin C and E. The crude protein content is 30.18%. The predominant mineral elements were potassium (121.60mg 100−1 g) and phosphorus (135.0mg 100−1 g). Other elements found in fairly high amounts are Sodium, Magnesium and Zinc.

The triterpenes found are 23, 24-dihydrocucurbitacin D, 23,24-dihydroisocucurbitacin B, cucurbitacin B, 3β-hydroxy-olean-13(18)-en-28-oic acid, 3-oxo-olean-13(18)-en-30-oic acid and the sterol 3-O-β-D-glucopyranosyl-24ξ-ethylcholest-7,22-dien-3β-ol. The percentage free fatty acid and acid values were low suggesting increased stability and usefulness in nutritional and industrial applications.

The chemical constituents present in T.cucumerina are cucurbitacin B, cucurbitacin E, isocucurbitacin B, 23,24-dihydroisocucurbitacin B, 23,24-dihydrocucurbitacin E, sterols 2 β-sitosterol stigmasterol. Low amount of chemical substances like oxalate, phytates and tannins are also present. Analysis showed that the seed of T. cucumerina have high oil content up to 42.5±5%. The presence of common protein bands among the species may be an evidence of evolutionary origin and many protein bands found to be unique in the Trichosanthes cucumerina suggested that there is no genetic relationship with Lycopersicon. A galactose-specific lectin and ribosome-inactivating protein named trichoanguin are present in aerial parts. The bulk of carotenoids made of lutein is present in the concentration of 15.6 -18.4 mg/100g FW. Circular dichroism spectroscopic studies reveal that TCSL contains about 28.4% beta-sheet, 10.6% beta-turns, 7% polyproline type 2 structure, with the remainder comprising unordered structure; the alpha-helix content is negligible. The α-carotene contents were 10.3 - 10.7 mg/100g FW and the β-carotene contents were found to be 2.4 - 2.8 mg/100g. The ascorbic acid content found was 24.8 – 25.7 mg/100g fresh weight and lycopene content was 16.0 and 18.1 mg/100g FW.
Chemical constituents

Chemical modifications carried out with imidazole side chains of histidine residues with ethoxyformic anhydride on the galactose-specific lectin (SGSL) purified from snake gourd. Trichosanthes seeds indicated that the loss of activity upon modification was not due to changes in the overall conformation of the lectin. A novel isoflavone glucoside, 5,6,6’-trimethoxy-3’,4’-methylenedioxyisoflavone7-O-beta-D-(2”-O-p-coumaroylglucopyranoside) has been characterized from the seeds of Trichosanthes. The positive effects of the plant are due to the carotenoids, flavonoids, lycopene, phenolics and 8-carotene present in it.

Tribal uses

Tricosanthes cucumerina is used in the treatment of headache, alopecia, fever, abdominal tumors, bilious, boils, acute colic, diarrhea, haematuria and skin allergy. T.cucumineria is used as an abortifacient, vermifuge, stomachic, refrigerant, purgative, malaria, laxative, hydragogue, hemagglutinin, emetic, cathartic, bronchitis and anthelmintic.

Root: Two ounces of root juice has a drastic purgative action. Roots are used for expelling worms. In China roots used for diabetes, skin swellings like boils and furuncles. Fresh root has anti-convulsant activity. Bulbous part of the root is used as a hydragogue and cathartic. Root is abortifacient, alexiteric, anthelmintic, anti-septic, astrinvent, diuretic and emetic.

Leaves: Leaf juice is rubbed over the whole body in remittent fevers. Dried leaves has anti-spasmodic property. An infusion of tender shoots and dried capsules is aperient, and the expressed juice of the leaves is emetic. The leaves and stems are used for bilious disorders and skin diseases and as an emmenagogue. Leaf is alexiteric, astrinvent, diuretic and emetic.

Fruits: The fruit is considered to be anthelmintic. The dried capsules are given in infusion or in decoction with sugar to assist digestion the fruit a very violent purgative and an efficient emetic.

Seeds: The seed is said to be cooling. The dried seeds are used for its anthelmintic and anti-diarrhoeal properties. Seeds have anti-bacterial, anti-spasmodic, antiperiodic and insecticidal properties. It is used as abortifacient, acrid, aphrodisiac, astrinvent, bitter, febrifuge, purgative, toxic, trichogenous.

Established scientific uses

Anti-inflammatory

Kolte RM, et al. in 1997 with hot aqueous extract of root tubers of Trichosanthes cucumerina have investigated against carrageenin induced mouse’s hind paw oedema and it exhibited significant anti-inflammatory activity.

Cytotoxic activity

Kongtun S et al. in 1999 with the root extract of Trichosanthes cucumerina L. and the fruit juice tested cytotoxicity against four human breast cancer cell lines and lung cancer cell lines and one colon cancer cell line. The root extract inhibited more strongly than the fruit juice.

Hypoglycaemic activity

Kar A et al. in 2003 with crude ethanolic extract of Tricosanthes cucumerina showed significant blood glucose lowering activity in alloxan diabetic albino rats.

Larvicidal efficacy

Rahuman A. A et al. in 2008 using the acetone extract of leaves of tricosanthes cucumerina showed moderate larvicidal effects.

Anti-diabetic activity

M Arawwawala, et al. in 2009 using hot water extract of aerial parts of Trichosanthes cucumerina has noted to improve glucose tolerance and tissue glycogen in non-insulin dependent diabetes mellitus induced rats. Study showed the drug possess antidiabetic activity with...
improvement in oral glucose tolerance and glucose uptake in peripheral tissues.26,29

Hepatoprotective activity

Sathesh Kumar S, \textit{et al} in 2009 found that the methanolic extract of the whole plant of tricosanthes cucumerina showed good hepatoprotective activity against carbon tetrachloride induced hepatotoxicity.30

Anti-fertility activity

Devendra N. Kage, \textit{et al} in 2009 showed the anti-oestrogenic activity of ethanol extract of whole plant of \textit{Trichosanthes cucumerina} L. var. \textit{cucumerina} in female albino rats.31

Gastroprotective activity

Arawwawala LD \textit{et al} in 2009 with hot water extract of \textit{Trichosanthes cucumerina}, showed a significant protection against ethanol or indomethacin induced gastric damage increasing the protective mucus layer, decreasing the acidiy of the gastric juice and antihistamine activity.32 Dose dependent gastroprotective effects were observed in the alcohol model in terms of the length and number of gastric lesions mediated by alcohol in wistar stain rats.32

ACKNOWLEDGEMENT

The authors are thankful to the Principal and Management of Nalanda College of Pharmacy for providing facilities to utilize the library and internet in the college.

REFERENCES

