Development of RP-HPLC Method for Vildagliptin in Pharmaceutical Dosage Form

Ahire Sujeetkumar*, Ahire Sandhya, Dr. Patil P.R., Jain Akshata, Chavhan Archana
KDYSCOT COP, Sakegaon, Bhusawal, Dist- Jalgaon, Maharashtra, India.425201.
*Corresponding author’s E-mail: Sandhyabl.lahane@gmail.com

Received: 19-11-2022; Revised: 25-12-2022; Accepted: 31-12-2022; Published on: 15-01-2023.

ABSTRACT

Vildagliptin which is DPP-4 inhibitor. The aim of the present study was to develop a simple, precise and stability-indicating HPLC method was developed and validated for the determination of Vildagliptin (VLG) in pharmaceutical dosage forms. In RP-HPLC method, the analytes were resolved using Buffer pH 3.0 and (ACN : Methanol) in the ratio of 80:19:1 as mobile phase at a flow rate of 1.2 ml/min, on HPLC water 2469 system containing of UV/PDA- detector with empower pro software and Waters X-Bridge, C8 column, 150 x 4.6 mm, 5 μm. The detection was carried out at 210 nm for the drug. The method was successfully validated in accordance to ICH guidelines acceptance criteria for specificity, linearity, accuracy, precision, robustness, and system suitability. Forced Degradation studies revealed that the method was found to be stability-indicating. The results showed that the proposed method is suitable for the precise and accurate determination of Vildagliptin in bulk and its formulation.

Keywords: Vildagliptin, RP-HPLC, Validation, Forced degradation studies.

INTRODUCTION

Vildagliptin (VDG), S-1-[N-(3-hydroxy-1- adamantyl) glycy1] pyrrolidine-2- carbonitrile is an oral antihyperglycemic agent (anti-diabetic drug) of the new dipeptidyl peptidase-4 (DPP4) inhibitor class of drugs1-2. Vildagliptin inhibits the inactivation of GLP1 and GIP by DPP-4, allowing GLP-1 and GIP to potentiate the secretion of insulin in the beta cells and suppress glucagon release by the alpha cells of the islets of Langerhans in the pancreas3. Vildagliptin has been shown to reduce hyperglycemia in type 2 diabetes mellitus. Literature survey revealed that few analytical methods are used for estimation of Vildagliptin17-8.

But there is no analytical method for the determination of Vildagliptin from its pharmaceutical dosage form. Due to lack of published liquid chromatographic methods for VDG, so the aim of the present work was to develop a reversed-phase liquid chromatographic (RP-LC) method that would be suitable for the determination of VDG from its pharmaceutical dosage form4-5,6. The proposed method is simple, accurate, reproducible and suitable for routine determination of Vildagliptin from its pharmaceutical dosage form.

MATERIALS AND METHODS

Drug Vildagliptin: Drug was obtained from Medichem Laboratories Ltd.

Reagents: Water, Acetonitrile, Methanol, Ortho phosphoric acid 88%, Triethylamine, Sodium 1-octanoyl sulfonate monohydrate all are HPLC grade & GR grade.

Instruments: HPLC model 2693/2998, pH meter, Analytical Balance, Sonicator, Double beam Spectrophotometer UV 1700 Shimadzu, FT-IR, Filter Nylon 0.45μm.

Identification by IR-Spectroscopy

Vildagliptin API: 1mg of Vildagliptin API was mixed properly with 200 mg of dried KBr and then carefully triturated in a mortar pestle. At last this mixture was kept on a die and IR spectrum was taken using the Diffused Attachment reflectance mode.

Figure 1: IR spectra of Vildagliptin

Determination of Max wavelength: The standard solutions were scanned separately between 200nm to 400nm. The spectrum, 210nm were recorded for estimation of drug.
RESULTS AND DISCUSSION

Chromatographic conditions:

Table 1: Chromatographic technique used for Vildagliptin determination

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Waters X-Bridge, C8, 150 x 4.6 mm, 5 µm</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>1.2 mL/min</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>10 µL</td>
</tr>
<tr>
<td>Wavelength</td>
<td>210 nm</td>
</tr>
<tr>
<td>Column Temp.</td>
<td>25°C</td>
</tr>
<tr>
<td>Sample Temp.</td>
<td>10°C</td>
</tr>
<tr>
<td>Run Time</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Retention Time</td>
<td>About 6.5 minutes</td>
</tr>
<tr>
<td>Needle Wash</td>
<td>Water : Acetonitrile (10:90)</td>
</tr>
<tr>
<td>Seal Wash</td>
<td>Water : Methanol (90:10)</td>
</tr>
</tbody>
</table>

Preparation of Standard stock solution

A. Vildagliptin: Weighed accurately about 25 mg of Vildagliptin working standard and transferred into 50 mL of volumetric flask. Add about 25 mL of diluent sonicated to dissolved and make up to volume with diluent and mix. (500mcg/mL).

B. Preparation of Standard solution:

Further transferred 20 mL of Vildagliptin Stock Solution into 50 mL volumetric flask and dilute up to the mark with diluent and mix.

C. Preparation of Sample Stock solution: (50/1000 mg):

Weighed and transfer 10 tablets into 1000 mL volumetric flask. Add about 700 mL of diluent, sonicated for 30 minutes with intermittent shaking. Allow it to cool to room temperature and make up to volume with diluent and mix. Let the solution stand for 5 minutes. Filter the sample solution through 0.45µm Nylon membrane syringe filter. Discard first 3 mL of filtrate.

• For Vildagliptin: Dilute 20 mL of stock solution into 50 mL volumetric flask and dilute up to the mark with diluent and mix. (200 mcg/mL).

Similarity Factor: Two standard solutions were prepared by standard procedure, and result obtained by using HPLC. Calculation:

\[
\text{Correlation} = \frac{\text{AS2}}{\text{WS1}} = \frac{\text{AS1}}{\text{WS2}} = 100
\]

Where,

AS1 : Average area from six replicates of 1st standard solution.
AS2 : Average area from two replicates of 2nd standard solution.
WS1 : Weight of 1st standard solution in mg.
WS2 : Weight of 2nd standard solution in mg.

System suitability

Single injection of Blank (Diluent), six replicate of Standard solution was injected on the system.

Specificity

The analysts should have no interference from other extraneous components and be well resolved from them. Specificity is the procedure to detect quantitatively the analyte in presence of component that may be expected to be present in the sample matrix, while selectivity is the procedure to detect qualitatively the analyte in presence of components that may be expected to be present in the sample matrix.

Table 2: Result for Vildagliptin

<table>
<thead>
<tr>
<th>Drug</th>
<th>Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vildagliptin</td>
<td>Similarity factor</td>
<td>99.5%</td>
</tr>
<tr>
<td></td>
<td>% RSD</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Retention time (min)</td>
<td>6.261</td>
</tr>
<tr>
<td></td>
<td>Symmetry factor</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Theoretical plate</td>
<td>3887</td>
</tr>
<tr>
<td></td>
<td>Purity angle</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td>Purity threshold</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td>Mean recovery</td>
<td>98.8</td>
</tr>
<tr>
<td>Vildagliptin</td>
<td>%RSD</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Acid degradation</td>
<td>91.1</td>
</tr>
<tr>
<td>Vildagliptin</td>
<td>Base degradation</td>
<td>84.2</td>
</tr>
<tr>
<td></td>
<td>Peroxide degradation</td>
<td>85.4</td>
</tr>
<tr>
<td></td>
<td>Heat degradation</td>
<td>88.8</td>
</tr>
<tr>
<td>Vildagliptin</td>
<td>Symmetry factor</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Theoretical plates</td>
<td>5433</td>
</tr>
</tbody>
</table>

Forced degradation

The study was performed to demonstrate the selectivity of the method in presence of degradation products. Sample and Placebo (Vildagliptin) were exposed to different stress conditions.
1. **Photolytic degradation**

20 Tablets were taken (50/1000 mg) in a two separate Petri Plates (One open petri plate and another wrapped with aluminum foil) and exposed it under UV and white light for 1.2 million lux hours and an integrated near ultraviolet energy of not less than 200 watt/square. After exposure, weigh and transfer 10 tablets into 1000 mL volumetric flask. Add about 700 mL of diluent, sonicated for 30 minutes with intermittent shaking. Allow it to cool to room temperature and made up to volume with diluent and mixed. Let the solution to stand for 5 minutes. Filter the sample solution through 0.45μ Nylon membrane syringe filter. Discarded first 3 mL of filtrate.

a. **Placebo preparation:** Prepared and Exposed the Placebo solution under UV and white light for 1.2 million lux same as sample solution.

For Vildagliptin: Diluted 20 mL of stock solution into 50 mL volumetric flask with diluent and mixed.

2. **Heat degradation**

Sample preparation: Weighed and transferred 10 tablets (50/1000 mg) into 1000 mL volumetric flask. Added about 700mL of diluent, sonicated for 30 minutes with intermittent shaking. Heated the solution in the water bath at about 70°C for 24 hrs. Allowed it to cool to room temperature and made up to volume with diluent and mixed. Let the solution to stand for 5 minutes. Filtered the sample solution through 0.45μ Nylon membrane syringe filter. Discarded first 3 mL of filtrate.

3. **Acid degradation**

Sample preparation: 10 tablets (50/1000 mg) was Weighed and transferred into 1000 mL volumetric flask. Added about 700mL of diluent, sonicated for 30 minutes with intermittent shaking. Added 10 mL 1N HCl and kept at RT for 24 hrs. Neutralized this solution before dilution with 10 mL 1N NaOH. Allowed it to cool to room temperature and made up to volume with diluent and mixed. Let the solution to stand for 5 minutes. Filtered the sample solution through 0.45μ Nylon membrane syringe filter. Discarded first 3 mL of filtrate.

4. **Base degradation**

Sample preparation: Weighed and transferred 10 tablets (50/1000 mg) into 1000 mL volumetric flask. Added about 700mL of diluent, sonicated for 30 minutes with intermittent shaking. Added 10 mL 1N NaOH and kept at RT for 24 hrs. Neutralized this solution before dilution with 10 mL 1N HCl. allowed it to cool to room temperature and made up to volume with diluent and mixed. Let the solution to stand for 5 minutes. Filtered the sample solution through 0.45μ Nylon membrane syringe filter. Discarded first 3 mL of filtrate.

5. **Peroxide degradation**

Sample preparation: Weighed and transferred 10 tablets (50/1000 mg) into 1000 mL volumetric flask. Added about 700mL of diluent, sonicated for 30 minutes with intermittent shaking. Added 10 mL 30% Hydrogen peroxide solution and kept at RT for 24 hrs. Allowed it to cool to room temperature and made up to volume with diluent and mixed. Let the solution to stand for 5 minutes. Filtered the sample solution through 0.45μ Nylon membrane syringe filter. Discarded first 3 mL of filtrate.
6. **Humidity degradation:**

**Sample preparation:** 10 tablets were taken (50/1000 mg) and transferred in a Petri Plate and exposed it at 25°C and 90% RH chamber for 2 days. After exposure weighed and transferred 10 tablets into 1000 mL volumetric flask. Added about 700 mL of diluent, sonicated for 30 minutes with intermittent shaking. Allowed it to cool to room temperature and made up to volume with diluent and mix. Let the solution to stand for 5 minutes. Filtered the sample solution through 0.45μ. Nylon membrane syringe filter. Discarded first 3 mL of filtrate.

**REFERENCES**


**Source of Support:** The author(s) received no financial support for the research, authorship, and/or publication of this article.

**Conflict of Interest:** The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

---

For any questions related to this article, please reach us at: globairesearchonline@rediffmail.com

New manuscripts for publication can be submitted at: submit@globairesearchonline.net and submit_iipsrr@rediffmail.com