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ABSTRACT 

Optimization of manganese peroxidase production by an indigenous litter decomposing basidiomycetes Agaricus heterocystis was 
studied under submerged fermentation. The physical parameters namely, pH, temperature, and the nutritional parameters like 
suitable carbon and nitrogen sources and aminoacids were studied for the higher enzyme production. Of the different temperature 
(20, 25, 30, 35 and 40C) tested for the optimal MnP production, 30C showed the maximum activity of 45.19 ± 1.08 U/ml on 17th 
day. The optimum pH for the MnP production was found to be pH 5.5. Among the different carbon sources tested fructose 
supported maximum (52.17 ± 0.97 U/ml) MnP production, where as peptone supported the maximum activity (53.86 ± 1.09 U/ml at 
day 19) among the different nitrogen sources tested. Of the different amino acids tested, tryptophan enhanced the maximum 
enzyme activity (54.39 ± 0.87 U/ml). The above result indicates that the Agaricus heterocystiscan be used as a biotechnological tool. 
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INTRODUCTION 

Basidiomycetes are the principal organisms responsible 
for lignocellulose degradation.1 Wood-rotting 
Basidiomycetous fungi are usually divided into white-rot, 
brown-rot and litter-decomposing fungi.2–4 

Basidiomycetous white-rot fungi and related litter-
decomposing fungi are the only organisms capable of 
mineralizing lignin efficiently.5 Basidiomyceteslitter-
decomposing fungi occur ubiquitously in forests and grass 
lands, where they colonize the upper layer of soil and 
humus layers. They live on dead plant material such as 
leaves, needles, twinges and grass residues. To break the 
protecting lignin barrier in lignocellulose, they produce 
the similar spectrum of extracellular oxidoreductase 
namely manganese-dependent peroxidase (MnP) (EC 
1.11.1.13) and laccase (EC 1.10.3.2) as wood 
decayingbasidiomycetes.6–8 

Manganese peroxidases (MnP) are extracellular haeme 
containing glycoprotein produced only by ligninolytic 
(wood-rotting and litter-degrading) basidiomycetes, 
especially during the secondary metabolism.9 They 
catalyse the H2O2-dependent oxidation of Mn2+ to a 
highly reactive Mn3+.10 The complex is a highly reactive 
oxidant that can freely diffuse away from the enzyme’s 
active centre because of its low molecular weight. Hence, 
it non-specifically oxidizes a variety of phenolic and non-
phenolic substances, including lignin and toxic 
pollutants.11 By removing lignin, fungi are able to access 
plant polysaccharides (hemicelluloses, cellulose), which 
serve as their primary source of carbon and energy. 
Hence, these ligninolytic enzymesare used in various 
biotechnological applications in pulp and paper, food, 
textile and dye industries, bioremediation, cosmetics, 
analytic biochemistry and many others. 

The main issue in delaying their implementation at 
industrial scale is the low yield of ligninolytic enzymes in 
most fungi. The ligninolytic machinery in most 
basidiomycetes is highly regulated by many typical 
fermentation factors such as medium composition, 
nature of carbon source, pH of fermentation broth, 
fermentation temperature, amount and nature of 
nitrogen source and presence of inducers (Cu2+, Mn2+, 
etc.).12–15 MnP production is generally optimal at high 
oxygen tension, but is repressed by agitation in 
submerged liquid culture.16,17 It is evident that the 
potential applications of these enzymes in industrial and 
environmental technologies require huge amounts of 
these enzymes at low cost. 

However, no studies on optimization of culture conditions 
for production of MnP by an indigenous edible litter-
decomposing basidiomycetes Agaricus heterocystis has 
been reported to date. Hence, in the present attempt, the 
test fungus was used to study the optimization of 
nutritional and environmental factors for the higher MnP 
production. 

MATERIALS AND METHODS 

Organism and inoculum preparation 

Fruiting body of the Agaricus heterocystis was isolated 
from south eastern part, IIT Madras, Chennai, India, and 
the culture was maintained onpotato dextrose agar 
medium(PDA) at room temperature. Inoculum of A. 
heterocystis was prepared from mycelia grown on the 
same medium incubated at room temperature for 4–
6 days. From the plate, 7-mm diameter mycelial disc was 
used as the inocula. 
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Optimization of medium on MnP production 

The modified Asther et al.,18 media composed of glycerol 
(10 g l1), ammonium tartarate (1.84 g l1), sodium 
tartarate (2.3 g l1), KH2PO4 (2 g l1), MgSO4 (7H2O) 
(0.7 g l1), CaCl2 (2H2O)(0.14 g l1), FeSO4 (7H2O) 
(0.07 g l1), ZnSO4 (7H2O) (0.046 g l1), MnSO4 (7H2O) 
(0.035 g l1), CuSO4 (5H2O) (0.007 g l1), thiamine 
(0.0025 g l1), yeast extract (1 g l1), veratryl alcohol 
(0.067 g l1) and Tween 80 (0.5 g l1) were used 
throughout the optimization strategies for manganese 
peroxidase production. Incubation was carried out on 
static condition at 30 ± 1C in 250 ml Erlenmeyer flask 
containing 30 ml of the medium inoculated with 7 mm 
agar plug from 6-day-old mycelia grown on malt-extract 
agar. Periodic harvesting of the mycelia was performed 
using the filter paper. An aliquot of supernatant was 
collected aseptically and culture filtrates were used as 
enzyme sources. 

Optimization of nutritional parameters on MnP 
production 

Optimization of MnP production by A. heterocystis was 
studied using different carbon sources such as fructose, 
lactose, sucrose, maltose, starch; various nitrogen sources 
such as ammonium nitrate, urea, beef extract, peptone, 
yeast extract; and various concentrations of aminoacids 
such as glycine, proline, alanine, tryptophan, methionine 
were used. Optimization of physiological parameters such 
as pH (4.0–8.0) and temperature (20–40C) were carried 
out. All chemicals used in this research were of analytical 
grade and were used without further purification. 

Enzyme activity assays 

Manganese peroxidase activity was determined by 
monitoring the oxidation of guaiacol (2-methoxyphenol) 
as the substrate at 465 nm with extinction coefficient, 
465 = 12100 M1 cm1.19 The reaction mixture contained 
0.5 M sodium succinate buffer (pH 4.5), 4 Mm guaiacol, 
1 mM MnSO4, 600 l of mycelial culture filtrate and 1 mM 
H2O2.Reaction mixture without culture filtrate served as 
the blank.One unit enzyme activity was defined as the 
amount of enzyme that oxidifies 1 M of substrate per 
minute at 25C. The activities were expressed in U/ml. 
The data represented are means of three replicates 
(mean ± SD). 

RESULTS AND DISCUSSION 

Effect of physical parameters (temperature, pH) on MnP 
production 

The optimum temperature for maximum MnP production 
by A.heterocystis was found to be 30C on day 17 with an 
activity of 45.19 ± 1.08 U/ml (Fig. 1). Very little ligninolytic 
activities were observed at temperatures above 30C 
probably due to the fact that increasing the temperature 
could have inhibited the fungal growth and hence, 
low/decreased enzyme activities. The same trend has also 
been demonstrated by Zadrazil et al.,20 when Pleurotus 

species and Dichomitus squalens were cultivated at 
temperatures higher than 30C. Similar results have been 
reported by Nakamura et al.,21 whereby, maximum 
lignolytic activity from cultures of B.adusta were attained 
at 30C; but above 37C, there was no activity observed. 
Also, Iqbal et al.,15 found substantial decrease in 
ligninolytic enzymes of Trametes versicolor IBL-04 when 
cultivated at temperatures higher than 30C. 

 
Figure 1: Effect of temperature on MnP production 

Maximum MnP produced was 48.33 ± 0.87 U/ml at pH 5.5 
on day 17 (Fig. 2). Activities in the most acidic medium 
(pH 3.5) were low compared to slightly acidic medium. 
These findings are in agreement with previous reports as 
most fungal enzymes have maximum activity when the 
initial pH of the nutrient medium ranges from 4 to 6.22–24 

 
Figure 2: Effect of pH on MnP production 

Effects of nitrogen on MnP production 

Among the various organic and inorganic nitrogen 
sources, the highest MnP produced was 
53.86 ± 1.09 U/ml at day 19 (Fig. 3) in the peptone 
containing culture medium. Nitrogen concentration in the 
submerged culture medium plays an important role in the 
production and activation of lignolytic enzymes. High 
nitrogen conditions have the effect of increasing fungal 
growth and biomass yield, thus increased enzyme 
production could have been a result of increased fungal 
biomass. The results obtained here are consistent with 
some previous findings, for example, supplementing 
organic nitrogen (peptone or casein) increase the MnP 
production in Pleurotus ostreatus.25–27 Levin and 
Forchiassin28 found high MnP production in the high 
nitrogen submerged culture of Trametes trogii. On the 
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other hand, Stajic et al.,29 reported the enhancement of 
peroxidase production in P.pulmonarious by inorganic 
nitrogen sources like KNO3and NH4H2PO4. 

 
Figure 3: Effect of nitrogen on MnP production 

Effect of carbon on MnP production 

The MnP production was found to vary with the different 
carbon sources. The maximum enzyme production 
(52.17 ± 0.97 U/ml) was recorded on 19th day of 
incubation with fructose at the concentration of 0.1% in 
the medium. Moderate levels of enzyme activities were 
obtained with mannitol, lactose, sucrose and starch 
(Fig.4).Increased enzyme activity in media containing 
these simple sugars can be explained by the high 
production rate of secondary metabolites when their 
producing organisms grow in complex media,30 whereas 
Mansure et al.,31 showed that the use of fructose instead 
of glucose resulted in a 100-fold increase in the specific 
lignolytic activity of basidiomycetes. Fasidi32 found that 
glucose and fructose stimulated mycelial biomass 
production in Volvariella esculenta. The lignolytic enzyme 
activity obtained in cultivation of Pleurotus sajor-cajuin 
media containing 0.5 g/l fructose or glucose (37and 
36 U/ml, respectively) was significantly higher than those 
obtained with lactose33. 

 
Figure 4: Effect of carbon on MnP production 

Effect of amino acids on MnP production 

The highest MnP production (54.39 ± 0.87 U/ml) was 
recorded on 17th day of incubation with tryptophan at 
the concentration of 0.01% in the medium (Fig.5). Lycine, 
alanine, methionine and proline (Fig. 5) showed moderate 
effect on MnP production. Levin and Forchiassin28 
reported that the addition of tryptophan increased 
enzyme production in the cultures of T.trogii BAFC 463. 

Dhawan and Kuhad34 tested 23 amino acids and 6 
vitamins for their effects on lignolytic enzyme production 
by Cyathus bulleri 195062 and showed the positive effects 
of methionine and tryptophan. Chandra et al.,35 reported 
that asparagine and aspartic acid have been employed in 
increasing the mycelial growth and fruit body production 
in Agaricus bisporus. 

 
Figure 5: Effect of amino acids on MnP production 

CONCLUSION 

There has been growing interest in studying the 
ligninolytic enzymes from fungi with the expectation of 
finding more effective systems for their application in 
various biotechnological approaches. It can be concluded 
that one of the key factors to increase the yield of 
ligninolytic enzymes is the optimization of the production 
medium.This study attempted to optimize culturing 
conditions in order to improve MnP activities in 
submerged culture of A.heterocystis. Varying the 
physicochemical parameters such as incubation 
temperature and initial medium pH improved the 
amounts of enzymes produced. Furthermore, altering the 
media compositions including addition of carbon, 
nitrogen, aminoacids enhanced the enzyme yields.An 
overall two-fold increase in MnP production was attained 
as compared to the initial medium. The substrates and 
inducers are safe, cheap and could be suggested for 
prospective application for the higher production of 
enzyme. This work provides baseline information on 
growth parameters optimization for A.heterocystis under 
submerged culture conditions. These findings have 
implication in the culture condition choice and design for 
further investigation at large scale. 
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