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ABSTRACT 

SOS response is a global regulatory response to protect cell from severe DNA damage. Induction of SOS response involves more than 
forty genes, and products of these genes maintain the integrity of cell by enhancing the adaptation through mutagenesis. Recent 
studies reported that certain antibiotic induces SOS response by activation of chromosomal DNA damage. In this paper we are 
reviewing the current information about SOS system, providing resistance to bacteria by enhancing repair and recombination. 
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INTRODUCTION 

any species of bacteria have preferentially 
evolved to invade and multiply within human 
and animals, making them a potential threat to 

the host if they cause a persistent infection that leads to 
illness or death. Bacteria are outnumbered than the 
human body cells (host) and average approx. 10:1. 
Pathogenic bacteria drastically prevent colonization of the 
normal microbial inhabitants thus affecting digestion and 
uptake of essential nutrients as well1. Unfortunately, the 
commensal bacteria, which are normally kept in check by 
the host’s immune system, can become pathogenic under 
opportunistic conditions. It was thought that, such 
pathogens might be controlled with introduction of 
antibiotic, but unfortunately not exactly happened like 
that; because bacteria have evolved resistance 
mechanism against antibiotics. Abraham and Chain2, for 
the first time reported the occurrence of microbial 
resistance against antibiotics. Major causes of 
transmission of drug resistance in bacteria are selective 
pressure of antibiotic used and social and technical 
changes that enhance the resistance in microorganisms. 
The mechanisms underlying bacterial resistance to 
antimicrobials reside in the ability of bacteria to degrade 
antibiotics by enzyme, quickly modify their Genome is a 
consequence of not only spontaneous mutations or 
genome rearrangements that can occur during the 
bacterial life cycle, but also of exogenous gene acquisition 
through genetic exchange between bacteria and gene 
capture in integrons3, 4. Several bacteria acquire antibiotic 
resistance by inducing stress response leading to 
expression of several genes, provide resistance for 
particular antibiotics.  

SOS response is stress response in bacteria, activated 
under stress condition by antibiotics that induces DNA 
damage5. SOS response maintains the integrity of cell by 
DNA repair and removal of mutagen from system. In this 
review, we have tried to reveal some important aspects 

of SOS response, conferred resistance to bacteria against 
certain antibiotics.  

1. Resistance mechanism in bacteria 

Antibacterial resistance in bacteria may be intrinsic or 
acquired6. Intrinsic resistance mechanism in bacteria is a 
natural occurring trait, generated by modification in 
genome, makes bacterial target site less accessible for 
antibiotics7, for example obligate anaerobes are resistant 
to aminoglycosides as they lack the electron transport 
system essential for antibiotic uptake8, 9. Gram negative 
bacteria are resistant to macrolides and certain β-lactam 
antibiotics as the drugs are too hydrophobic to traverse 
the outer membrane10. While, acquired resistance is a 
trait in which bacteria previously sensitive to an 
antibiotic, display resistance further, either by mutation 
or acquisition of DNA or a combination of the two11. 
Methods of acquiring antibiotic resistance in bacteria are 
further given below: 

Mutation: Krasovec and Jerman12 reported that mutation 
in bacteria can be either spontaneous or adaptive. 
Spontaneous mutation may be either by replication error 
or due to DNA damage in actively dividing cell responsible 
for antibiotic resistance13. Several studies reported that 
mutations in the genes encoding the targets of rifamycins 
and fluoroquinolones, i.e. RpoB and DNA-topoisomerases 
respectively, results in resistance against those 
compounds14, 15. Prolonged exposure of bacterial species 
to sublethal concentration of antibiotic switches a small 
population of bacteria to generate a brief state of high 
mutation16, 17. This stage of mutation in bacteria is called 
‘hypermutation’ in which they acquire to relieve the 
selective pressure, they grow, reproduces and exits the 
state of high mutation rate18, 19. Krosovec and Jerman 12 
reported that, bacteria overcome such selective pressure 
related problem by induction of a special type of SOS 
inducible mutator DNA polymerase (pol) IV. 
Hypermutators in bacteria play a significant role in the 
evolution of antibiotic resistance and may also be 
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responsible for the multi-resistant phenotype which has 
been reported in several literatures 20-23, 14. These 
mutations, known as adaptive mutations, have been 
associated with the evolution of antibiotic resistant 
mutants under natural conditions24-26. Adaptive 
mutagenesis is regulated by the stress responsive error 
prone DNA polymerases V (umuCD) and IV (dinB) 27, 9, 28. 
Piddock and Wise29 demonstrated that some antibiotic 
like quinolones induce a SOS mutagenic response and 
increase the rate of emergence of resistance in E. coli.  

Horizontal gene transfer: Transfer of genetic material 
consisting of single or multiple mutation in between 
bacterial cells by conjugation, transduction and by 
transformation is known as horizontal gene transfer 
responsible for the spread of antibiotic resistance. These 
transferred genes may also be associated with plasmids 
and/or transposons. In addition, Simjee and Gill1 reported 
that high level resistance to gentamycin and other 
aminoglycosides (except streptomycin) in Enteroccoci, 
was found to be associated with narrow and broad host 
range plasmids.  

2. Role of SOS response in bacteria 

SOS response is a stress regulator found among all 
bacterial species, come into play when huge number of 
damaged DNA is found in the cell30, 31. SOS response 
works together with two proteins RecA and LexA32. 
Function of RecA protein is to assemble on ssDNA to form 
a nucleoprotein filament known as the presynaptic 
complex6. This filament is an adaptable structure, capable 
of performing three separate functions: homologous 
recombination (interaction with double-stranded DNA, 
dsDNA), SOS induction (cleavage of the LexA repressor) 
and SOS mutagenesis (interaction with the processed 
Umu(D’) 2C complex (DNA polymerase V)14. The active 
nucleoprotein filament is a helical complex of RecA 
protein monomer wrapped around ssDNA at a 
stoichiometry of three nucleotides per monomer and 
about six monomers per turn33. ssDNA and RecA filament 
bind around the LexA and facilitate autocleavage of LexA 
repressor, and autocleavage of LexA protein causing 
induction of more than 40 genes of SOS regulon involved 
in damage repair and recombination34, 35. 

3. Quinolones and their mode of action 

Quinolones are those antibiotics which destroy bacteria 
by targeting nucleic acid structure such as gyrase and 
topoisomerase II36. Fluoroquinolones are synthetic 
antibiotics developed in the 1970s, used as human 
medicine to treat infectious diseases 37. To the date, four 
generations of quinolones have been discovered, 1st 

generation of quinolones was nalidixic acid, 2nd 
generation norfloxacin and its derivatives ciprofloxacin 
and ofloxacin formed by substituent fluoro at 6th position 
and saturated nitrogen containing heterocycle at 7th 
position. The first representative of this generation was 
norfloxacin, thus norfloxacin and its derivatives 
ciprofloxacin and ofloxacin have broad spectrum of 
activity. 3rd generation of fluoroquinolones are 

levofloxacin and 4th generation of fluoroquinolones are 
moxifloxacin, furthermore, fluoroquinolones have broad 
spectrum of activity against gram negative and gram 
positive bacteria 37, 11.  

4. SOS response mediated resistance of bacterial cells 
against quinolones drugs 

Quinolones are very good inducer of SOS response in 
bacteria. DNA damage in bacterial cell triggers the 
production of various repair proteins by activating SOS 
gene network 32, 23, 38-40. Qnr is protein family, protecting 
DNA gyrase from the quinolones18. Several similar 
proteins have been identified such as QnrA as well as 
QnrB, QnrC, QnrD and QnrS 41. QnrB protein, coded by 
qnrB gene in bacteria that provides resistance against 
quinolones, reside on the plasmid 39. The LexA binding 
site is located in the sequence upstream from qnrB, so 
that qnrB is regulated by the SOS-system, in response to 
DNA damage42. The peptide QnrB protects bacterial DNA-
topoisomerases from quinolone inhibition and provides 
low-level quinolone resistance by a mechanism termed 
“plasmid mediated fluoroquinolones resistance”43, 44. The 
Qnr determinants facilitate the emergence of high-level 
antibiotic resistance in bacteria. In E. coli, this effect 
depends on the increased mutation ability conferred by 
the nonessential polymerases Pol II, Pol IV, and Pol V on 
LexA-cleavage-mediated de-repression of their respective 
genes (polB, dinB, and umuDC)38. Quinolones resistance 
gene qnrB is upregulated by ciprofloxacin in a RecA/LexA 
dependent manner. Quinolones resistance development 
in qnrB harboring bacteria is an integral part of their 
mode of action45. Ciprofloxacin resistant mutants could 
be elicited much more frequently in LexA positive wild-
type strains than in LexA mutant strains and preventing 
LexA cleavage make bacteria sensitive for 
fluoroquinolones46, 47. In addition, SOS response induces 
persistence to fluoroquinolones48. Quinolone resistance is 
not only acquired via target site mutations, but also via 
SOS system by de-repression of genes whose products 
increase mutation rates.     

5. Induction of bacterial resistance by SOS regulon 
against cell wall stress promoter antibiotics 

Quinolones as well as β-lactams activate SOS regulon49; 
zidovudine or trimethoprim and rifampin activate the SOS 
gene network as well50, 45. Bacteria resistance against cell 
wall inhibitors induces SOS response via DpiBA pathway51. 
When cell wall integrity is affected by penicillin binding 
protein 3 (encoded by ftsI) which is specific target of 
pipericillin and cephalexin, either chemically (by exposure 
to some β-lactams) or genetically (by introducing a 
temperature-sensitive ftsI allele), activate the DpiBA two-
component signal transduction system52, 51. RecA protein 
forms filament with damaged DNA, rendering the 
activation of the DNA damage-responsive SOS network of 
genes25 owing to expression of SulA, a key component of 
the SOS network that inhibits septation and leads to cell 
elongation and inhibiting polymerization of septation 
triggering FtsZ monomers53, 22. Interestingly, β-lactams 
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that inhibit PBP3 and induce filamentation have been 
shown to stimulate the DpiAB two-component system, 
which can activate the SOS response51. β-lactam lethality 
can be enhanced by disrupting DpiAB signaling or by 
knocking out SulA. This indicates that SulA may protect 
bacteria against β-lactam killing by shielding FtsZ and 
limiting a division ring interaction among PBPs and 
peptidoglycan hydrolases51. In support of this idea, SulA 
expression limits the lysis observed in a strain of E.coli 
that expresses FtsZ54, consequently delay in cell division 
provides temporary protection from β-lactam’s lethality49. 
In the long term, development of resistance against 
sublethal exposure to the cell wall stressor could be 
favored by SOS-mediated mutagenesis, and it was indeed 
shown that error-prone DNA polymerase Pol IV (DinB) 
activity, which is part of the SOS regulon, is also induced 
by β-lactam antibiotics10.  

6. SOS response mediated induction of persister cells  

Presence of antibiotic leads to formation of persister cells 
by inducing SOS response48, 55. Persisters are antibiotic 
tolerant cells that are not killed during treatment with 
antibiotics and resume growth when antibiotics are 
removed. Persisters are not pre-existing dormant cells, 
but rather that their formation is induced by the SOS 
response48. Persister cell formation can occur through the 
induction of toxins from the toxin-antitoxin family, such 
as TisB from the SOS regulon, which decrease the growth 
rate (drop of ATP, inactive peptidoglycan synthesis, no 
ribosome, no replication), causing tolerance to multiple 
antibiotics55. Interestingly, 15 toxin-antitoxin modules are 
present in the V. cholerae SI34. Hence, sub concentration 
of antibiotics causes induction of SOS response by leading 
to formation of persisters, which eventually contribute to 
the development of multiple drug resistance in bacteria. 

CONCLUSION 

The role of SOS response is very divergent under stressed 
condition; bacteria facing myriad of stress during daily 
life. To protect the integrity of cell, SOS mechanism 
comes in to play. In this review, we have studied about 
antibiotic mediated stresses causing induction of SOS 
response, leading to antibiotics resistance in bacteria. SOS 
response not only protects cell from stress conditions, but 
also confers resistance against many class of antibiotics. 
Thus, by controlling key regulators of SOS response, we 
can limit the spread of multiple drug resistance in 
bacteria.  
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