

Structural, Spectroscopic Investigation and Quantum Chemical Calculation Studies of 2,4,6trimethylphenol for Pharmaceutical Application

S. Jeyavijayan¹*, E. Gobinath¹, J. Senthil Kumar²

1Department of Physics, Kalasalingam University, Anand Nagar, Krishnankoil 626 126, Tamil Nadu, India. 2PG & Research Department of Physics, Periyar EVR College, Tiruchirappalli 620 023, India. *Corresponding author's E-mail: sjeyavijayan@gmail.com

Accepted on: 10-08-2016; Finalized on: 31-10-2016.

ABSTRACT

The FTIR and FT-Raman spectra of 2,4,6-trimethylphenol (TMP) have been recorded in the regions 4000-400 cm⁻¹ and 3500-50 cm⁻¹, respectively. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by *ab initio* Hartree–Fock (HF) and density functional theory (DFT/B3LYP) methods using 6-31+G(d,p) basis set. The normal modes are assigned with the help of total energy distribution (TED) analysis. The observed vibrational wavenumbers were compared with the calculated results. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The calculated first hyperpolarizability results show that TMP may have microscopic nonlinear optical (NLO) behavior with non-zero values. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer have been discussed. Besides, molecular electrostatic potential (MEP), Mulliken's charges analysis, and several thermodynamic properties were performed.

Keywords: FTIR, FT-Raman, 2,4,6-trimethylphenol, DFT calculations, MEP.

INTRODUCTION

henol and its derivatives are interesting molecules for theoretical studies due to their relatively small size and similarity to biological species. They are also the versatile precursor to a large collection of drugs, most notably aspirin but also many herbicides and pharmaceuticals. Phenol derivatives are used in the preparation of cosmetics including sunscreens, hair dyes and skin lightening preparations. Unlike normal alcohols, phenols are acidic because of the influence of the aromatic ring¹. Phenol and its vapours are corrosive to the eyes, the skin and the respiratory tract. In recent years, phenol and substituted phenol have been the frequent subjects of experimental and theoretical work because of their significance in industry and environment. Evans² has extensively studied the vibrational assignments of infrared spectrum of phenol. The DFT studies on the phenol and thiophenol interaction on an undecagold cluster surface have been investigated by Jayanthi et al^3 . Jianhan Huang et al^4 have elucidated halogen effect and isotope effect of Chloro Phenol and Gui-xiangWang et al.⁵ have obtained the vibrational analysis on nitro phenols. The vibrational spectroscopy investigation using ab initio (HF) and DFT (B3LYP) calculations on the structure of 3-Bromo phenol have been studied by Mahadevan et al⁶. From the spectroscopic point of view, in recent years numerous experimental and theoretical studies have been made on the vibrational spectra of phenol derivatives⁷⁻⁹. More recently, the FT-IR and DFT study of the free and solvated 4-(imidazol-1-yl) phenol have been studied by Yurdakul et al¹⁰.

During the course of investigation on the samples of biological and pharmaceutical active compounds, our attention has been turned towards 2,4,6-trimethylphenol (TMP). It is one of the most important organic intermediates, are widely used for the manufacture of pesticides, rubber, drugs, varnishes and dyestuffs. The assignment of the vibrational frequencies for substituted phenols becomes complicated problem because of the superposition of several vibrations due to fundamentals and due to substituents. However, a comparison of the spectra with that of the parent compound gives some definite clues about the nature of the molecular vibrations.

Literature survey reveals that to the best of the knowledge, no *ab initio*/DFT frequency calculations for 2,4,6-trimethylphenol have been reported so far for the frequency assignments. Therefore, the present investigation was undertaken to study the vibrational spectra of the molecule completely and to identify the various normal modes with greater wave numbers accurately. In this study, *ab initio* HF and density functional theory (DFT) calculations have been performed to support our wave number assignments.

MATERIALS AND METHODS

The pure sample of TMP obtained from Lancaster chemical company, UK and used as such for the spectral measurements. The room temperature Fourier transform infrared spectra of the title compound was recorded in the region 4000-400 cm⁻¹, at a resolution of ± 1 cm⁻¹ using BRUKER IFS 66V model FTIR spectrometer equipped with an MCT detector, a KBr beam splitter and globar source.

Available online at www.globalresearchonline.net

214

The FT-Raman spectrum of TMP was recorded on a computer interfaced BRUKER IFS 66V model interferometer equipped with FRA-106 FT-Raman accessories. The spectrum was measured in the Stokes region 3500-50 cm⁻¹ using Nd: YAG laser operating at 200 mW power continuously with 1064nm excitation. The reported wave numbers are expected to be accurate within ± 1 cm⁻¹.

Computational Details

In order to provide information with regard to the structural characteristics and the normal vibrational modes of TMP, the ab initio HF and DFT-B3LYP correlation functional calculations have been carried out. The molecular geometry optimizations, energy and vibrational frequency calculations were carried out for TMP with the GAUSSIAN 09W software package¹¹. Initial geometry generated from the standard geometrical parameters was minimized without any constraint on the potential energy surface at HF level adopting the standard 6-31+G(d,p) basis set. This geometry was then re-optimized again at DFT level employing the Becke 3LYP keyword, which invokes Becke's three-parameter hybrid method¹² using the correlation function of Lee *et al.*¹³, implemented with the same basis set. The optimized structural parameters were used for the vibrational frequency calculations at DFT level to characterize all the stationary points as minima. The multiple scaling of the force constants were performed according to SQM procedure¹⁴ using selective scaling in the natural internal coordinate representation. The transformation of force field and calculation of the TED were done on a PC with the MOLVIB program (version V7.0-G77) written by Sundius^{15,16}. By the use of GAUSSVIEW molecular visualization program¹⁷ along with available related molecules, the vibrational frequency assignments were made by their TED with a high degree of confidence. The TED elements provide a measure of each internal coordinate's contributions to the normal coordinate.

RESULTS AND DISCUSSION

Molecular geometry

The optimized molecular structure of TMP is shown in Fig. 1. The global minimum energy obtained by the HF and DFT structure optimization using 6-31+G(d,p) basis set for TMP are calculated as -422.70193282 and -425.45596685 Hartrees, respectively. The optimization geometrical parameters of TMP obtained by the HF and DFT/B3LYP methods with 6-31+G(d,p) basis set are listed in the Table 1. From the structural data given in Table 1, it is observed that the geometrical parameters are found to be almost same at HF/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels. However, the B3LYP/6-31+G(d,p) level of theory, in general slightly over estimates bond lengths but it yields bond angles in excellent agreement with the HF method. The calculated geometrical parameters are the bases for calculating other parameters such as vibrational frequencies and thermodynamics properties of the compound. According to the calculation (B3LYP/6-31+(d, p)), the order of the bond length is C5-C6 < C3-C4 < C2-C3= C4-C5 < C1-C2 < C1-C6. From the order of the bond length, it is clear that the hexagonal structure of the benzene ring slightly distorted. This can be due to the influence of conjugation between the substituents and the ring. Normally the O-H group oxygen from its strong electron-withdrawing nature in the para position is expected to increase the contribution of the resonance structure. This is evidenced by the larger C–O bond length calculated by B3LYP/6-31+(d, p) method is 1.3789 Å. The ring carbon atoms in substituted benzenes exerts a larger attraction on the valence electron cloud of the hydrogen atom resulting in an increase in the C-H force constants and a decrease in the corresponding bond length. It is evident from the C-H bond lengths in TMP vary from 1.0881 to 1.0884Å by B3LYP/6-31+(d,p) method. The benzene ring appears to be a little distorted because of the O-H group and methyl group substitutions as seen from the bond angles C2-C1-C6, C1-C6-C5, C5-C4-C3 and C3–C2–C1, which are calculated as 121.69°, 117.95°, 117.77° and 118.09°, respectively, by B3LYP/6-31+(d,p) method and are differ from their typical hexagonal angle of 120°.

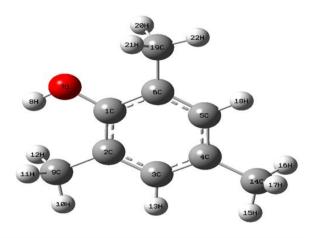
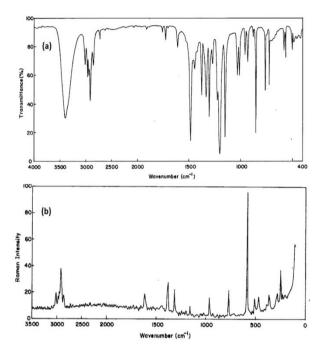


Figure 1: Molecular structure of 2,4,6-trimethylphenol


Vibrational assignments

From the structural point of view the molecule is assumed to have C_1 point group symmetry and hence, all the calculated frequency transforming to the same symmetry species (A). The molecule consists of 22 atoms and expected to have 60 normal modes of vibrations. All the vibrations are active both in the Raman scattering and infrared absorption. The detailed vibrational assignment of fundamental modes of TMP along with the calculated IR and Raman frequencies, IR intensity, Raman activity and normal mode descriptions (characterized by TED) are reported in Table 2. The observed FTIR and FT-Raman spectra of TMP are shown in Figs. 2.

The main focus of the present investigation is the proper assignment of the experimental frequencies to the various vibrational modes of TMP in corroboration with the calculated harmonic vibrational frequencies at HF and

B3LYP levels using the standard 6-31+G(d,p) basis set. Comparison of the frequencies calculated by HF and DFT-B3LYP methods with the experimental values reveals the overestimation of the calculated vibrational modes due to neglect of anharmonicity in real system.

Figure 2: (a) FTIR and (b) FT-Raman spectrum of 2,4,6-trimethylphenol.

The results indicate that the B3LYP/6-31+G(d,p) calculations approximate the observed fundamental frequencies much better than the HF/6-31+G(d,p) results. The vibrational analysis obtained for TMP with the unscaled HF and B3LYP force field is generally somewhat greater than the experimental values. These discrepancies can be corrected either by computing anharmonic corrections explicitly or by introducing a field or directly scaling the calculated scaled wavenumbers with proper factor⁶. A tentative assignment is often made on the basis of the unscaled frequencies by assuming the observed frequencies so that they are in the same order as the calculated ones. Then, for an easier comparison to the observed values, the calculated frequencies are scaled by the scale to less than 1, to minimize the overall deviation. A better agreement between the computed and experimental frequencies can be obtained by using different scale factors for different regions of vibrations For that purpose, a scaling factor of 0.90 (above 1800 cm⁻¹) and 0.92 (below 1800 cm⁻¹) for the fundamental modes except the torsional mode has been utilised to obtain the scaled frequencies of the compound TMP in HF level. Similarly, a scale factor of 0.925 (up to 1700 cm⁻¹) and 0.97 (below 1700cm⁻¹) was used to compute the corrected wavenumbers at DFT level and compared with the experimentally observed frequencies. The resultant scaled frequencies are also listed in Table 2.

O-H vibrations

Bands due to O-H stretching are of medium to strong intensity in the infrared spectrum, although it may be broad. In Raman spectra the band is generally weak. In phenols, the free O-H group absorbs at 3615 cm⁻¹ while the associated group has a stretching frequency in the range 3145-3430 cm⁻¹. This is due to the intermolecular hydrogen bonding¹⁸. The O-H stretching bands move to lower frequencies usually with increased intensity and band broadening in the hydrogen bonded species. In TMP, the FTIR band appeared at 3396 cm⁻¹ is assigned to O-H stretching modes of vibration, which is further supported by the TED contribution of 99%. The O-H inplane-bending vibration in phenol, in general, lies in the region 1150-1250 cm⁻¹ and is not much affected due to hydrogen bonding unlike the stretching and out-of-plane deformation frequencies. The O-H out-of-plane deformation vibration in phenols lies in the region 290-320 cm⁻¹ for free O-H and in the region 517-710 cm⁻¹ for associated O-H¹⁹. Hence, in this study, the in-plane and out-of-plane bending vibrations of hydroxy group have been identified at 1256 and 385 cm⁻¹ in the FT-Raman for TMP, respectively. These bending modes show consistent agreement with the computed B3LYP results.

C-H vibrations

Aromatic compounds commonly exhibit multiple weak bands in the region 3100-3000 cm⁻¹ due to aromatic C-H stretching vibrations²⁰. Hence, the Raman bands appeared at 3180 and 3100 cm⁻¹ in TMP have been assigned to C-H stretching vibrations and these modes are confirmed by their TED values. The bands due to C-H inplane ring bending vibrations, interact somewhat with C-C stretching vibrations, are observed as a number of sharp bands in the region 1300-1000 cm⁻¹. The C-H out-of-plane bending vibrations are strongly coupled vibrations and occur in the region 900-667 cm⁻¹. The FT-Raman bands at 1226, 1202 cm⁻¹ and infrared band at 1230 cm⁻¹ are assigned to C–H in-plane bending vibrations of TMP. The out-of-plane bending vibrations of C-H group have also been identified for TMP and they were presented in Table 2. The theoretically computed values for C-H vibrational modes by B3LYP/6-31+G(d,p) method gives excellent agreement with experimental data.

CH₃ group vibrations

For the assignments of CH_3 group frequencies one can expect nine fundamentals to be associated with each CH_3 group, namely the symmetrical stretching in CH_3 (CH_3 sym. stretching); asymmetrical stretching (i.e. in-plane hydrogen stretching mode); the symmetrical (CH_3 sym. deformation) and asymmetrical (CH_3 asy. deformation) deformation modes; the in-plane rocking (CH_3 ipr), out-ofplane rocking (CH_3 opr) and twisting t(CH_3) modes.

International Journal of Pharmaceutical Sciences Review and Research Available online at www.globalresearchonline.net

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

Table 1: Optimized geometrical parameters of 2,4,6-trimethyl phenol obtained by HF and B3LYP using 6-31+G(d,p) basis set calculations

Parameter	Value (Å)			Valu	e (°)		Value (°)		
Bond length	HF B3LYP		Bond angle	HF B3LYP		Dihedral Angle	HF	B3LYP	
C1-C2	1.3869	1.4030	C2-C1-C6	121.5268	121.6991	C6-C1-C2-C3	0.0009	0.1062	
C1-C6	1.3955	1.4051	C2-C1-07	122.1702	122.0006	C6-C1-C2-C9	180.0016	-179.7411	
C1-07	1.3609	1.3789	C6-C1-O7	116.303	116.3	07-C1-C2-C3	-180.0029	179.8806	
C2-C3	1.3947	1.4020	C1-C2-C3	118.2457	118.0958	07-C1-C2-C9	-0.0021	0.0333	
C2-C9	1.5123	1.5117	C1-C2-C9	120.9394	120.7048	C2-C1-C6-C5	-0.0014	-0.1187	
C3-C4	1.3834	1.3975	C3-C2-C9	120.8148	121.1992	C2-C1-C6-C19	-180.0022	179.7318	
C3-H13	1.077	1.0881	C2-C3-C4	122.0622	122.1348	07-C1-C6-C5	180.0021	-179.9053	
C4-C5	1.3938	1.4020	C2-C3-H13	118.5066	118.4884	07-C1-C6-C19	0.0013	-0.0547	
C4-C14	1.5119	1.5124	C4-C3-H13	119.4312	119.3767	C2-C1-O7-H8	-0.0216	0.13	
C5-C6	1.3839	1.3971	C3-C4-C5	117.7929	117.7787	C6-C1-O7-H8	-180.0251	179.9159	
C5-H18	1.0776	1.0884	C3-C4-C14	121.6025	121.3149	C1-C2-C3-C4	-0.0003	0.07	
C6-C19	1.5088	1.5081	C5-C4-C14	120.6045	120.9003	C1-C2-C3-H13	-179.9991	-179.8671	
O7-H8	0.9414	0.9651	C4-C5-C6	122.2087	122.3329	C9-C2-C3-C4	-180.0011	179.9165	
C9-H10	1.0827	1.0929	C4-C5-H18	119.1943	119.2766	C9-C2-C3-H13	0.0002	-0.0206	
C9-H11	1.0883	1.0991	C6-C5-H18	118.597	118.3904	C1-C2-C9-H10	-180.0059	179.9556	
C9-H12	1.0883	1.0991	C1-C6-C5	118.1636	117.9582	C1-C2-C9-H11	-60.6126	-60.6986	
C14-H15	1.0842	1.0943	C1-C6-C19	119.942	120.038	C1-C2-C9-H12	60.6022	60.5844	
C14-H16	1.0862	1.0957	C5-C6-C19	121.8944	122.0036	C3-C2-C9-H10	-0.0052	0.1131	
C14-H17	1.0862	1.0974	C1-07-H8	111.9087	110.1003	C3-C2-C9-H11	119.3882	119.4588	
C19-H20	1.0851	1.0959	C2-C9-H10	110.6111	110.6784	C3-C2-C9-H12	-119.397	-119.2581	
C19-H21	1.0851	1.0935	C2-C9-H11	111.8566	112.1986	C2-C3-C4-C5	0.0003	-0.2227	
C19-H22	1.0838	1.0959	C2-C9-H12	111.8562	112.2138	C2-C3-C4-C14	179.9884	178.8852	
			H10-C9-H11	107.1763	106.9241	H13-C3-C4-C5	179.9991	179.7138	
			H10-C9-H12	107.1753	106.9363	H13-C3-C4-C14	-0.0128	-1.1783	
			H11-C9-H12	107.9284	107.5931	C3-C4-C5-C6	-0.0009	0.2096	
			C4-C14-H15	111.1311	111.3101	C3-C4-C5-H18	-179.9977	-179.7047	
			C4-C14-H16	111.2298	111.502	C14-C4-C5-C6	-179.9891	-178.9021	
			C4-C14-H17	111.2271	111.4485	C14-C4-C5-H18	0.014	1.1835	
			H15-C14-H16	107.7668	107.7644	C3-C4-C14-H15	0.077	14.9116	
			H15-C14-H17	107.7653	107.4376	C3-C4-C14-H16	120.1498	135.2873	
			H16-C14-H17	107.5462	107.1594	C3-C4-C14-H17	-119.992	-105.0122	
			C6-C19-H20	111.0719	111.3007	C5-C4-C14-H15	-179.9352	-166.0083	
			C6-C19-H21	111.0707	110.7735	C5-C4-C14-H16	-59.8624	-45.6325	
			C6-C19-H22	110.5733	111.3073	C5-C4-C14-H17	59.9958	74.0679	
			H20-C19-H21	107.0805	108.3905	C4-C5-C6-C1	0.0014	-0.0439	
			H20-C19-H22	108.4613	106.5111	C4-C5-C6-C19	180.0023	-179.8913	
			H21-C19-H22	108.4589	108.3954	H18-C5-C6-C1	179.9983	179.8712	
						H18-C5-C6-C19	-0.0009	0.0238	
						C1-C6-C19-H20	-59.5179	59.3912	
						C1-C6-C19-H21	59.5449	-179.9402	
						C1-C6-C19-H22	-179.9884	-59.261	
						C5-C6-C19-H20	120.4813	-120.7645	
						C5-C6-C19-H21	-120.456	-0.0959	
						C5-C6-C19-H22	0.0107	120.5833	

For numbering of atoms refer Fig.1.

Table 2: The observed FTIR, FT-Raman and calculated (Unscaled and Scaled) frequencies (cm⁻¹), IR intensity (Km mol⁻¹), Raman Activity (Å⁴ amu⁻¹) and probable assignments (characterized by TED) of 2,4,6- trimethyl phenol using HF/6-31+G(d,p) and B3LYP/6-31+G(d,p) calculations

Baseber No. Find Remain Unscaled Scaled Activity Instruction Unscaled Activity Scaled Scaled Activity Instruction Unscaled Activity Instruction Unscaled Activity Instruction Unscaled Activity Instruction Unscaled Activity Instruction Unscaled Activity Instruction Unscaled Activity Instruction Unscaled Activity Instruction Unscale Activity Instruction Unscale Activity Instructinstruction Unscale Activity Instructins	proc	probable assignments (characterized by TED) of 2,4,6- trimethyl phenol using HF/6-31+G(d,p) and B3LYP/6-31+G(d,p) calculations Observed Calculated frequencies v ₁ (cm ⁻¹)											
No. FIR. Rama Uscaled v. Scaled R. Barna Interestly Concontracts 1 A 3366 (b) - 47.19 3777 94.5646 60.339 3843 3554 59.1577 82.486 VCH (99) 3 A - 3100 (b) 3329 197.107 80.0126 31163 2925 2927 1.4099 114.477 VCH (98) 4 A - 300 (b) 3229 2926 223.20 827.21 31161 2925 292.92 124.99 114.977 VCH (98) 7 A 2937(m) - 3247 292.22 24.498 82.4677 3011 2855 15941 91.3425 CH ₁₄ m (89) 7 A 2937(m) - 3187 82.488 24.077 3018 329.21 32.014 32.22 32.183 CH ₁₄ m (89) 10 A 27.261 (m) 3187 82.481 82.4477 3008 32.39.33 32.13.33	SI.	Species							,				TED(%) among types
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Uncepledy			Raman	Uncepted v			Raman	
2 A - 3180 (w) 332 2001 11,717 90,702 2116 2202 280,56 42.284 42.74 <td></td> <td></td> <td>FIIK</td> <td>Raman</td> <td>Unscaled v</td> <td>Scaled</td> <td>intensity</td> <td>activity</td> <td>Unscaled V_i</td> <td>Scaled</td> <td>intensity</td> <td>activity</td> <td>coordinates</td>			FIIK	Raman	Unscaled v	Scaled	intensity	activity	Unscaled V _i	Scaled	intensity	activity	coordinates
3 A - 3100 (a) 322 295 2133 2925 2155 A 3014 (w) - 2046 (b) 2054 (b)	1	А	3396 (s)		4219				3843	3554	59.1577	82.4816	vOH (99)
4 A - 3019 (w) 3264 927 28.78 55.530 9122 2887 13.749 61.289 Cht(s) (a) 6 A - 980 (w) 3255 929 26.356 62.4407 3111 2857 15.394 91.499 0.7458 (91) 7 A 2971(w) 218 3207 28.470 281 25.91 93.9146 2859 15.394 71.49 92.91 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92			-										
5 A J013 (W) - 3264 2937 20.6454 63.548 3121 2986 16.3158 63.2403 CHAs [9] 7 A 2973 (m) - 3247 2222 23.4498 82.4407 3011 2879 15.9941 94.3425 CHips [9] 8 A 2917 (W) 2306 2207 24.708 83.3452 3033 2824 22.1331 66.577 CHips [9] 10 A 2.850 (W) 3189 2507 14.7461 19.1314 3038 2810 47.7913 24.8186 CHips [9] 11 A 1.726 (W) 1.8127 15.24 10.3271 15.5750 1608 1.009 1.03558 18.7976 CHips [9] 13 A 1.612 (W) 1624 1.03724 4.5730 15.01 1404 8.3311 3.3139 8.3127 VCC (8) 14 A 1.612 (W) 1.626 1.0949 1.0121 1.444 8.3331 8.3314 <td></td> <td></td> <td>-</td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-	. ,									
6 A - 2980 (w) 3255 22.92 23.468 62.4671 3111 2877 18.4483 37400 CHups (9) 8 A 2944 (w) . 3247 22.3448 83.944 3033 2251 20.6411 91.4355 10 A 257(m) 91.98 2870 41.4264 191.3184 3038 28.310 44.2210 CHups (8) 11 A - 257(m) 91.88 26.66 51.138 179.904 20.972 44.1165 21.337 CHups (8) 12 A - 2740 (w) 1807 154.485 15.575 1560 1600 3.5568 13.317 29.975 vCC (8) 13 A 1728 (w) 1620 59.986 15.575 1560 1450 2.3311 3.967 vCC (8) 14 A 1524 (w) 1668 1479 5.2311 1268 1467 2.3313 8.311 3.9576 vCC (8)			-										
7 A 2973(ms) - 3247 2922 224.498 82.4407 3091 25.9941 91.5941 94.4805 CHµpr (90) 9 A 2917 (w) 9108 (w) 3206 288.79 83.3962 3038 282.1 22.1331 66.577 CHµpr (88) 11 A - 2250 (w) 3189 2260 51.1388 179.904 3020 228.91 47.7213 24.8286 CHµpr (87) 13 A 1770 (w) 3160 2264 49.021 15.931 1508 16.08 0.1009 27.8776 CHµpr (87) 14 A 1772 (w) 1 1807 15.24 103.726 4.5733 15.06 16.00 3.0579 vCC (81) 15 A - 1604 (w) 15.24 103.726 4.5231 14.53 3.3311 3.679 vCC (82) 18 A - 1604 (w) 15.79 16.751 14.45 14.331 3.300 15.51													
8 A 2944 (w) - 3230 2907 24.780 83.942 3033 2851 20.621 A4.235 CHips (8) 10 A 2857(m) - 3189 2870 41.4264 191.318 3038 28210 44.22131 96.6577 CHips (9) 11 A - 2760 (w) 3161 2844 490.219 170.9271 3008 2722 44.1165 23.9733 CHips (8) 12 A - 1726 (w) 1501 154.485 1658 1608 0.009 20.993 vcC (87) 15 A - 1720 (w) 1521 1510 19.9148 9.1012 1513 1447 8.3311 3.9679 vcC (81) 16 A - 1604 (w) 1632 1501 10.7561 1435 1.477 2.3131 8.48 8.0047 8.0518 vcC (81) 17 A 1604 (w) 1570 1469 1.3197 7.3726 <													
9 A 917 (m) 9218 (m) 3208 2837 4 2.3231 2.2331 6.6777 CH, pp. (8) 11 A - 2850 (m) 3188 2800 41.264 40.019 3080 221.321 6.6777 CH, pp. (8) 12 A - 2740 (m) 3161 2444 40.019 110.9271 3008 27.22 44.1165 23.6973 (CL, pp. (8)) 13 A 1740 (s) . 1800 16.26 5.948 15550 1508 3.0588 3.8796 vCC (8) 15 A . 1640 (vm) 1632 1501 19.9138 0.1621 1491 3.9679 vCC (8) 16 A . 1640 (vm) 1649 5.3986 0.722 1510 1451 7.811 1466 1451 7.814 4.7211 7.811 1.466 1.451 7.821 4.833 1.8018 VCC (8) 12 A 1.644 (wm) 1.570 1.444 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-									
10 A 2857(m) - 3189 2870 41,4264 191.3184 3038 2810 342.20 248.886 CH,opc (9) 12 A - 2740 (w) 3181 2844 90.19 170.9271 3008 2782 44.165 223.9733 CH,opc (87) 13 A 1740 (s) - 1800 1520 59648 155570 1550 1660 35569 17.726 VCC (87) 15 A - 1640 (vw) 1632 1501 19.9148 9.1012 1513 1467 23.1319 8.3127 VCC (87) 16 A - 1604 (vw) 1631 1476 57.19 1455 2.441 1.5284 VCC (83) 17 A 1451 (v) 1603 1474 67.19 9.1322 1448 5.2847 7.326 1473 142.8 20.012 2.0126 VCC (83) 12 A 1446 (m3) - 1544 1422 1				- 2018 (w)									
11 A - 2850 (w) 3178 2860 51.1588 178.9046 3029 2801 47.7016 243.7076 CH.(ops.(87) 13 A 1740 (s) - 1807 1626 0.0079 154.4455 1558 1608 0.100 25.968 18.7976 CY.(C(8) 14 A 1728 (w) - 1800 1625 5.956 15.757 1564 1608 2.3411 15.254 VCC (8) 16 A - 1604 (w) 1614 1484 5.7350 1500 1455 7.838 VCC (8) 17 A 1604 (w) 1614 1484 6.7722 1.431 1446(m) VCC (8) 18 A - 1603 1474 6.7119 9.1792 1443 1438 8.0047 2.5035 VCC (8) 21 A 1486(m) - 1557 1.474 1.893 1.402 1.365 1.572 1.473 1428 2.0015				2910 (W)									
12 A - 2740 (n) 3161 2844 49.019 170.2721 3008 2782 44.16 × 23.9733 CPL (opt) (F) 14 A 1728 (n) - 1800 1526 5.9648 155750 1550 1600 35568 18.7926 VCC (F) 15 A - 170 (n) 1557 1524 103.7226 4.5233 1530 1484 83.311 3.9679 VCC (F) 16 A - 160 (n) 1620 1490 5.9386 0.7622 1500 1455 2.4411 15284 VCC (F) 17 A - 1600 (n) 1644 479 4.2011 10.7661 1491 1446 5.292 7.0256 VCC (F) 12 A 1446 (n) 1570 1464 1593 3.1032 1423 1301 2.5779 CF(p) (P) (R) 12 A 1446 (n) 1570 1441 1203 1432 1303 0.225 C				2850 (w)									
13 A 1740 (s) . 1807 1626 0.0079 15.4485 1658 1608 0.100 25.988 12.792 vcc (s) 15 A . 1720 (w) 1657 1524 103.7226 45.333 1530 1444 83.3127 vcc (s) 16 A . 1640 (w) 1614 1494 59.366 0.7222 1513 1467 23.1319 8.3127 vcc (s) 18 A . 1604 (w) 1614 1494 6.8782 11.9331 1496 1451 7.887 10.6158 vcc (s) 20 A 1448 (m) . 1603 1474 6.7119 9.1792 1483 8.004 2.0012 2.0145 2.0102 2.0145 4.001 1381 4.001 1365 3.023 1451 1443 1408 5.8053 Ccf (s) 1.0151 1412 1.0393 3.022 1473 1423 130 1497 1.0151 10.1151			-	. ,									
14 A 1728(w) - 1800 1620 5.96.8 16.772 1600 3.558 18.7926 VCC (87) 15 A - 1640 (vw) 1632 1530 1444 8.3311 3.679 VCC (84) 17 A 1612 (s) - 1620 1490 5.3386 0.7822 1500 1455 7.3411 1.5244 VCC (84) 18 A - 1604 (vw) 1601 1474 6.7119 9.172 1433 1438 8.0047 8.0055 VCC (80) 21 A 1448(ms) - 1507 1469 25.2877 7.3726 1473 1428 7.0126 7.0126 VCC (80) 22 A - 1440 (w) 1570 1443 1389 3.1032 1431 1616 1422 1117 7.059 1420 1376 0.4509 10912 CH ₁ bp (8) 23 A 1326 (s) 1544 1420 0.1368			1740 (s)										
15 A - 1720 (w) 1657 1554 100, 122 1513 1647 23.1319 3.9679 vCC (85) 16 A 1612 (s) . 1620 1501 19.9148 9.1012 1513 1467 23.1319 8.3117 vCC (82) 18 A . 1604 (w) 1614 1449 6.8722 11.9331 1496 1445 7.387 10.6158 vCC (82) 19 A . 1603 1479 4.201 10.751 1444 6.7129 1433 1438 1438 8.0078 8.0078 VCC (82) 21 A 1446(ms) . 1570 1444 1.8993 3.1032 1431 1407 2.5105 5.8033 CH_1pb (81) 23 A . 1356 (s) 1546 1422 1177 7.2059 1423 1380 0.9319 2.5771 CK(81) 24 A . 1366 (s) . 1431 1420 1373 1.94246 CH_1pb (71) 25 A . <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				-									
16 A - 1540 (w) 1632 1501 (s) 199148 9.1012 1513 1467 73.319 8.3127 VCC (84) 17 A 1612 (s) - 1604 (w) 1614 1488 6.8782 11.9531 1496 1451 7.887 10.6158 VCC (83) 19 A - 1495 (w) 1608 1479 4.719 9.1792 1443 1448 8.0047 8.0055 VCC (82) 21 A 1446(ms) - 1577 1479 9.73726 1473 1428 2.70126 2.70126 VCC (82) 22 A - 1440 (w) 1570 1444 1429 1310 1477 1.4188 8.0047 8.0033 CH:(b) (b) 101 23 A 1376 (w) - 1531 1442 0.8973 9.2255 1423 1380 0.937 2.5779 CH:(b) (b) 101 125 1431 1426 1476 1336 1426 1426 1476 1346 1476 1356 15377 CH:(b) (b) <t< td=""><td></td><td>А</td><td>-</td><td>1720 (w)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		А	-	1720 (w)									
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$			-										
18 A - 1604 (w) 1614 1448 6.8722 11.9531 1496 1415 12.887 10.618 VCC (83) 19 A 1488(ms) - 1603 1474 6.7119 9.1792 1448 8.0047 8.0505 VCC (82) 21 A 1448(ms) - 1597 1469 25.2877 7.3726 1473 1428 8.0047 2.5180 5.8053 C(1, ipb (8)) 22 A - 1440 (w) 1570 1444 1420 1117 7.059 1420 1137 14731 19.426 0.4509 10.9122 C(1, ipb (78) 24 A - 1300 (s) - 1544 1420 0.1368 5.2721 1419 1376 0.4509 10.9122 C(1, ipb (78) 25 A 1320 (s) 1.271 1311 6.1618 3.7681 1338 1.927 0.2135 2.1572 C/149 29 A 1226 (w)			1612 (s)								2.3411		
19 A - 1495 (w) 1603 1474 6.701 9.1792 1483 1438 8.0047 6.0505 VCC (80) 20 A 1486(ms) - 1603 1474 6.7119 9.1792 1483 1438 8.0047 6.0505 VCC (80) 21 A - 1440 (w) 1570 1444 1.8993 3.1032 1451 1407 2.5180 5.8053 CH; jbc [80] 23 A 1376 (w) - 1554 1422 1.117 7.2059 1420 1377 0.4000 10.9122 C(+; jbc [78) 26 A 1336 (s) - 1433 1318 2.0251 8.316 1363 13227 6.4059 1.6857 1.526 VCO (74) 28 A 1272 (s) 1367 1257 71.3789 4.6711 1296 2.227 1.252 VCO (74) 28 A 1272 (m) 133 1460 1003 1.263 1.			-	1604 (vw)									
20 A 1486(ms) - 1603 1474 6,7119 9,1722 1483 1438 8,0077 8,0055 vCC (80) 21 A - 1440(w) 1570 1444 1,8993 3,1032 1441 1407 2,5180 5,8053 CH; job (80) 22 A - 1365 (s) 1546 1422 1377 1,4731 19,4246 CH; job (80) 23 A - 1365 (s) 1546 1422 1,117 7,2059 1420 1337 1,4731 19,4246 CH; job (7) 26 A 1336 (s) - 1546 1422 0,2558 1338 1229 6,2155 23,5772 CH; job (7) 27 A - 1256 (w) 1338 1239 6,0588 2,7134 1260 1222 48,2727 1,7279 b)CH (7) 31 A 1226 (w) 1338 1230 6,0588 2,7134 1260 1224 48,30 <t< td=""><td>19</td><td>А</td><td>-</td><td>1495 (w)</td><td>1608</td><td>1479</td><td>4.2031</td><td>10.7561</td><td>1491</td><td>1446</td><td>5.2912</td><td>9.8333</td><td></td></t<>	19	А	-	1495 (w)	1608	1479	4.2031	10.7561	1491	1446	5.2912	9.8333	
22 A - 1440 (w) 1570 1444 1.8993 3.1032 1451 1407 2.5180 5.8053 CH; ipb (80) 23 A 1376 (w) - 1551 1426 0.8973 9.2295 1423 1380 0.8919 92.25779 CH; ipb (81) 24 A - 1365 (s) 1544 1420 0.1368 5.2721 1419 1377 1.4731 19.424C CH; ipb (78) 25 A 1336 (s) - 1300 (s) 1425 1311 66.1678 3.7685 1338 1229 6.2135 23.5772 CH; ipb (75) 28 A 1225 (w) 1338 1230 60.5588 2.7134 1260 1122 13.722 1.7279 D0H (72) 30 A 1226(ms) 1220 (w) 1280 1177 36.7982 2.7517 1215 1178 1244 63085 bCH (70) 31 A 1202(ms) - 1164 1070 2.1744 63085 bCH (70) 32 A - 1150	20	А	1488(ms)	-	1603	1474	6.7119	9.1792	1483	1438	8.0047	8.0505	
23 A 1376 (w) - 1551 1426 0.8973 9.2295 1423 1380 0.8919 22.5779 CH, ipb (R1) 24 A - 1365 (s) 1544 1420 0.1368 5.2721 1419 1376 0.4090 10.9122 CH, ipb (79) 25 A 1306 (s) - 1433 1318 2.0251 8.8316 1363 1322 18.7650 1.6813 CH, ipb (79) 26 A 1306 (s) 1367 1257 7.7877 CH, ipb (75) 28 A 1272 (s) 1367 1257 7.13789 4.6711 1296 1277 1.7297 bOH(72) 30 A 1226 (m) 138 1230 60.6588 2.7134 1260 1227 4.3722 1.7297 bOH(71) 31 A 1226 (m) 1373 1606 0.3697 0.4058 10061 1029 4.0848 0.7446 Rtrigo (69) 34 A <td>21</td> <td>А</td> <td>1446(ms)</td> <td>-</td> <td>1597</td> <td>1469</td> <td>25.2877</td> <td>7.3726</td> <td>1473</td> <td>1428</td> <td>27.0126</td> <td>27.0126</td> <td>vCC (82)</td>	21	А	1446(ms)	-	1597	1469	25.2877	7.3726	1473	1428	27.0126	27.0126	vCC (82)
24 A - 1365 (s) 1546 1422 1.117 7.2059 1420 1377 1.4731 19.4246 CH; jbp (78) 25 A 1338 (vs) - 1544 1420 0.1368 5.2721 1419 1376 0.4509 10.9122 CH; js (76) 26 A 1300 (s) 1425 1311 66.1678 3.7685 1338 1227 16.567 1.526 vc(0.7) 28 A 1226 (iw) 1338 1230 60.6588 2.7134 1260 1222 48.7272 1.7297 bOH(72) 30 A 1226(iw) 1230 1177 36.7928 2.7517 1215 1174 12.97939 3.7042 bCH(70) 31 A 1202(ms) - 1164 1070 2.9144 0.1032 0.3946 0.1192 CH; opb (72) 33 A 1160(ms) - 1116 1068 0.3697 0.4058 1.6840 CH; opb (71)	22	А	-	1440 (w)	1570	1444	1.8993	3.1032	1451	1407	2.5180	5.8053	CH ₃ ipb (80)
25A1338 (vs).154414200.13685.2721141913760.450910.9122CH ₁ sb (79)26A1300 (s)143313182.02518.83161363132218.76501.6813CH ₁ sb (76)27A-1300 (s)1425131166.16783.7685133812276.213523.5772CH ₁ sb (76)28A1272 (s)-1367125771.37894.67111296122715.262VCO (74)29A-1256 (vw)1388123060.65882.71341260122717.297bCH (72)31A1202(ms)-1263116138.5016.21461176114032.17446.3985bCH (70)32A-1196 (w)116410702.91440.1003106210300.3946CH ₁ opb (68)33A1160(ms)-116110680.36970.4058106110242.5340.2580CH ₁ opb (68)34A-1196 (w)111110288.82922.29871013110021.23072.1304Raymd (68)35A1031(ms)-111810288.2922.2987104110091.88430.7846Rtrigd (69)36A1032(w)1010(w)1111102212.65431.5019103310021.230720.432536A<	23	А	1376 (w)	-	1551	1426	0.8973	9.2295	1423	1380	0.8919	22.5779	CH ₃ ipb (81)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1365 (s)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
28 A 1272 (s) - 1367 1257 71.3789 4.6711 1296 1257 16.8657 1.5262 vCO (74) 29 A - 1256 (w) 1338 1230 60.6588 2.7134 1261 1178 12.7297 bOH (72) 31 A 1220 (w) 1280 1177 36.7928 2.7517 1215 1178 12.939 3.7042 bCH (71) 31 A 1202(ms) - 1263 1161 38.6501 6.2146 1176 1140 32.1744 6.3985 bCH (70) 32 A - 1150 (w) 1153 1060 0.1336 0.0593 1061 1029 4.0698 1.6490 (71) 35 A 1031(ms) - 1118 1028 8.8292 2.2987 1041 1009 1.83843 0.7846 Rtrigd (69) 36 A 1010 (w) 1111 1022 12.6543 1024 993 10.9027			. ,										
29 A 1256 (vw) 1338 1230 60.6588 2.7134 1260 1222 48.7272 1.7297 bOH (72) 30 A 1226(ms) 1230 (w) 1280 1177 36.7928 2.7517 1215 1178 129.7939 3.7042 bCH (71) 31 A 1106 (w) 1164 1070 2.9144 0.1003 1062 1030 0.3946 0.1192 CH ₁ opb (72) 33 A 1160 (w) 1151 1068 0.3697 0.4058 1061 1029 4.6698 1.6840 CH ₁ opb (72) 34 A - 1150 (w) 1111 1028 8.8292 2.987 1041 1009 18.843 0.7846 Rrigd (69) 35 A 963 (w) - 1012 92.6533 10.2363 10.2307 2.1304 Rsymd (67) 38 A - 958 (ms) 1038 954 0.9292 11.6543 977 942													
30 A 1226(ms) 1230 (w) 1280 1177 36.7928 2.7517 1215 1178 129.7939 3.7042 bCH (71) 31 A 1202(ms) - 1263 1161 38.6501 6.2146 1176 1140 32.1744 6.3985 bCH (70) 33 A 1160(ms) - 1161 1068 0.3697 0.4058 1061 1029 4.0698 1.6840 CH ₃ opb (72) 33 A 1016(ms) - 1118 1028 8.292 2.2987 1041 1009 18.8843 0.7846 Rrigd (69) 36 A 1012 (w) 1010 (w) 1111 1022 12.6543 1.5019 1033 1002 1.2307 2.1304 Rsymd (68) 37 A 969 (w) - 1028 952 1.63543 972 942 6.6623 12.8851 CH ₃ opr (66) 39 A 932 (ms) - 1010 929 0.4895 <td></td>													
31 A 1202(ms) - 1263 1161 38.6501 6.2146 1176 1140 32.1744 6.3985 b CH (70) 32 A - 1196 (w) 1164 1070 2.9144 0.1003 1051 1030 0.3946 0.1192 CH ₃ opb (72) 33 A 1150 (w) 11153 1060 0.1336 0.5953 1056 1024 2.5354 0.2580 CH ₃ opb (72) 35 A 1031(ms) - 1118 1028 8.8292 2.2987 1041 1009 18.843 0.7846 Rtrigd (69) 36 A 1012 (w) 10111 1022 12.6543 15019 1033 10.007 0.4325 Rasymd (67) 38 A - 958 (ms) 1038 954 0.9292 11.6543 972 942 6.6623 12.8851 CH ₃ opr (66) 39 A 932 (ms) - 1010 929 0.4895 0.3284 0.202													
32 A - 1196 (w) 1164 1070 2.9144 0.1003 1062 1030 0.3946 0.1192 CH ₁ opb (72) 33 A 1160(ms) - 1161 1068 0.3697 0.4058 1001 1029 4.0698 1.6840 CH ₁ opb (72) 34 A - 1150 (w) 1153 1060 0.1336 0.5953 1056 1024 2.5354 0.2800 CH ₁ opb (72) 35 A 1031(ms) - 1118 1028 8.8292 2.2987 1041 1009 18.843 0.7846 Rtrigd (69) 36 A 996 (w) - 1082 9951 0.2324 1024 993 10.9027 0.4325 Rasymd (67) 38 A - 926 (w) 1010 929 1.4543 972 942 6.6623 12.8851 CH ₁ opr (69) 40 A - 920 (w) 1002 9217 7.2172 0.6935													
33 A 1160(ms) - 1161 1068 0.3697 0.4058 1061 1029 4.0698 1.6840 CH ₃ opb (68) 34 A - 1150 (vw) 1153 1060 0.1336 0.5953 1066 1024 2.5354 0.2580 CH ₃ opb (71) 35 A 1031(ms) - 1118 1022 12.6543 1.5019 1033 1002 1.8843 0.7846 Rtrigd(69) 36 A 1012(w) 1010 (w) 1111 1022 12.6543 1.5019 1033 1002 1.2307 0.4325 Rasymd(67) 38 A 995 (w) - 1010 299 1.6543 972 942 6.6623 12.8251 CH ₁ opr(69) 40 A - 920 (w) 1002 921 7.2172 0.6959 855 868 0.7823 0.5820 CH ₁ opr(69) 42 A 723 (s) - 635 544 0.2593			1202(ms)										
34 A · 1150 (vw) 1153 1060 0.1336 0.5953 1056 1024 2.5354 0.2580 CH ₃ opb (71) 35 A 1031(ms) · 1118 1028 8.8292 2.2877 1041 1009 18.8843 0.7846 Rtrigd (69) 36 A 1012 (w) 1010 (w) 1111 1022 12.6543 1.5019 1033 10021 0.4325 Rasymd (67) 38 A · 958 (ms) 1038 954 0.9292 11.6543 972 942 6.6623 12.8851 CH ₃ opr (66) 39 A · 920 (w) 1002 921 7.2172 0.6959 855 868 0.7823 0.5820 CH ₃ opr (68) 41 A · 820 (w) 974 896 30.2844 0.2025 867 840 2.1972 0.3244 CH ₃ opr (66) 42 A 853 (w) - 828 761 11.0892 <td></td> <td></td> <td>- 1160(ms)</td> <td></td>			- 1160(ms)										
35 A 1031(ms) . 1118 1028 8.8292 2.2987 1041 1009 18.8843 0.7846 Rtrigd (69) 36 A 1012 (w) 1010 (w) 1111 1022 12.6543 1.5019 1033 1002 1.2307 2.1304 Rsymd (68) 37 A 969 (w) - 1082 995 16.3291 0.2363 1024 993 10.9027 0.4325 Rasymd (67) 38 A - 958 (ms) 1038 954 0.9292 11.6543 972 942 6.6623 12.8851 CH ₁ opr (69) 40 A - 920 (w) 1002 921 7.2172 0.6959 856 868 0.7823 0.5820 CH ₁ opr (69) 41 A - 880 (w) 974 895 0.3284 0.225 867 840 2.1970 0.2324 CH ₁ opr (69) 42 A 853 (vs) - 828 761 <t< td=""><td></td><td></td><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			. ,										
36 A 1012 (w) 1010 (w) 1111 1022 12.6543 1.5019 1033 1002 1.2307 2.1304 Rsymd (68) 37 A 969 (w) - 1082 995 16.3291 0.2363 1024 993 10.9027 0.4325 Rasymd (67) 38 A - 958 (ms) 1038 954 0.9292 11.6543 972 942 6.6623 12.8851 CH ₃ opr (69) 40 A - 920 (w) 1002 921 7.2172 0.6959 895 868 0.7823 0.5820 CH ₃ opr (69) 41 A - 880 (w) 974 896 30.2844 0.2025 867 840 21.9720 0.2324 CH ₃ opr (69) 42 A 853 (vs) - 828 761 11.0892 7.9539 772 748 11.9575 8.0693 CH ₃ ipr (65) 44 A 723 (s) - 635 584 <													• • • •
37 A 969 (w) - 1082 995 16.3291 0.2363 1024 993 10.9027 0.4325 Rasymd (67) 38 A - 958 (ms) 1038 954 0.9292 11.6543 972 942 6.6623 12.8851 CH ₃ opr (66) 39 A 932 (ms) - 1010 929 0.4895 0.5588 937 908 7.2656 0.0912 CH ₃ opr (68) 40 A - 920 (w) 1002 921 7.2172 0.6959 895 688 0.7823 0.5820 CH ₃ opr (68) 41 A - 880 (w) 974 896 30.2844 0.2025 867 840 21.9720 0.2324 CH ₃ opr (66) 43 A 762 (s) 765 (s) 811 746 6.2519 0.344 725 703 3.2274 0.3144 CH ₃ opr (65) 44 A 723 (s) - 635 584 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
39A932 (ms)-10109290.48950.35889379087.26560.0912 $CH_3 opr (69)$ 40A-920 (w)10029217.21720.69598958680.78230.5820 $CH_3 opr (68)$ 41A-880 (w)97489630.28440.202586784021.97200.2324 $CH_3 ipr (66)$ 42A853 (vs)-82876111.08927.953977274811.95758.0693 $CH_3 ipr (65)$ 44A722 (s)-6355842.81400.05835835655.75344.7181bCC (65)44A723 (s)-6355842.81400.05835835632.09442.2541bCC (66)45A711 (ms)-6275766.47344.81275815632.09442.2541bCC (66)46A706 (ms)-6085590.007027.57335755570.322521.8820bCC (66)47A701 (w)-5565110.00050.27985064991.56540.6987bCO (55)48A682 (ms)-578 (s)4954.3574.634492.07866.2511 ω CH (61)49A-578 (s)4954.552.38546.58754634492.07866.2511 ω CH (62)5				-									
40 A - 920 (w) 1002 921 7.2172 0.6959 895 868 0.7823 0.5820 CH3 opr (68) 41 A - 880 (vw) 974 896 30.2844 0.2025 867 840 21.9720 0.2324 CH3 ipr (66) 42 A 853 (vs) - 828 761 11.0892 7.939 772 748 11.9575 8.0693 CH3 ipr (65) 43 A 762 (s) 765 (s) 811 746 6.2519 0.3464 725 703 3.2274 0.3194 CH3 ipr (65) 44 A 723 (s) - 635 584 2.8140 0.0583 583 565 5.7534 4.7181 b CC (65) 45 A 701 (w) - 566 511 0.0005 27.5733 575 557 0.3225 21.8820 b b CC (66) 47 A 701 (w) - 556 511 0.0005	38	А		958 (ms)	1038	954	0.9292	11.6543		942	6.6623	12.8851	CH₃ opr (66)
41 A - 880 (ww) 974 896 30.2844 0.2025 867 840 21.9720 0.2324 CH ₃ ipr (69) 42 A 853 (vs) - 828 761 11.0892 7.9539 772 748 11.9575 8.0693 CH ₃ ipr (66) 43 A 762 (s) 765 (s) 811 746 6.2519 0.3464 725 703 3.2274 0.3194 CH ₃ ipr (66) 44 A 723 (s) - 635 584 2.8140 0.0583 583 565 5.7534 4.7181 b CC (65) 45 A 711 (ms) - 627 576 6.4734 4.8127 581 563 2.0944 2.2541 b CC (66) 46 A 706 (ms) - 608 559 0.0670 27.5733 575 0.3225 21.8820 b b CC (65) 47 A 701 (w) - 556 511 0.0005 0.2798 506 490 1.5654 0.6987 b CO (65) 48 A	39	А	932 (ms)	-	1010	929	0.4895	0.3588	937	908	7.2656	0.0912	CH₃ opr (69)
42 A 853 (vs) - 828 761 11.0892 7.9539 772 748 11.9575 8.0693 CH ₃ tpr (66) 43 A 762 (s) 765 (s) 811 746 6.2519 0.3464 725 703 3.2274 0.3194 CH ₃ tpr (65) 44 A 723 (s) - 635 584 2.8140 0.0583 583 565 5.7534 4.7181 b CC (65) 45 A 711 (ms) - 627 576 6.4734 4.8127 581 563 2.0944 2.2541 b CC (66) 46 A 706 (ms) - 608 559 0.0670 27.5733 575 557 0.3225 21.8820 b CC (66) 47 A 701 (w) - 556 511 0.0075 2.7573 557 0.3225 21.8820 b CC (66) 48 A 682 (ms) - 578 (s) 495 455 2.3854 6.5875 463 449 2.0786 6.2511 0 C (16) 50 <td>40</td> <td>А</td> <td>-</td> <td>920 (w)</td> <td>1002</td> <td>921</td> <td>7.2172</td> <td>0.6959</td> <td>895</td> <td>868</td> <td>0.7823</td> <td>0.5820</td> <td>CH₃ opr (68)</td>	40	А	-	920 (w)	1002	921	7.2172	0.6959	895	868	0.7823	0.5820	CH₃ opr (68)
43 A 762 (s) 765 (s) 811 746 6.2519 0.3464 725 703 3.2274 0.3194 CH ₃ ipr (65) 44 A 723 (s) - 635 584 2.8140 0.0583 583 565 5.7534 4.7181 b CC (65) 45 A 711 (ms) - 627 576 6.4734 4.8127 581 563 2.0944 2.2541 b CC (64) 46 A 706 (ms) - 608 559 0.0670 27.5733 575 557 0.3225 21.8820 b CC (66) 47 A 701 (w) - 556 511 0.0005 0.2798 506 490 1.5654 0.6987 b CO (65) 48 A 682 (ms) - 542 498 3.3078 1.8179 504 488 1.2418 0.6646 ω CH (61) 49 A - 578 (s) 495 325 4.4151 0.0772 327 317 4.2889 0.0645 t Rsymd (61) 52													
44 A 723 (s) - 635 584 2.8140 0.0583 583 565 5.7534 4.7181 b CC (65) 45 A 711 (ms) - 627 576 6.4734 4.8127 581 563 2.0944 2.2541 b CC (66) 46 A 706 (ms) - 608 559 0.0670 27.5733 575 557 0.3225 21.8820 b CC (66) 47 A 701 (w) - 556 511 0.0005 0.2798 506 490 1.5654 0.6987 b CO (65) 48 A 682 (ms) - 542 498 3.3078 1.8179 504 488 1.2418 0.6646 ω CH (61) 49 A - 578 (s) 495 4.55 2.3854 6.5875 463 449 2.0786 6.2511 ω CH (62) 50 A 565 (w) - 392 360 0.1399 1.5869 356 345 0.1790 1.1791 t Ring (60) 51 A </td <td></td>													
45A711 (ms)-6275766.47344.81275815632.09442.2541b CC (64)46A706 (ms)-6085590.067027.57335755570.322521.8820b CC (66)47A701 (w)-5565110.00050.27985064901.56540.6987b CO (65)48A682 (ms)-5424983.30781.81795044881.24180.6646ω CH (61)49A-578 (s)4954552.38546.58754634492.07866.2511ω CH (62)50A565 (w)-3923600.13991.58693563450.17901.1791t Rrigd (60)51A-520 (vw)3543254.41510.07723273174.28890.0645t Rsymd (61)52A501 (w)501 (w)3002761.21750.452729128284.05590.8050t R asymd (60)53A493 (w)-2892650.73270.47382792701.1230.7033ω CC (58)54A482 (vw)-26524321.5251.19672702610.87210.7620ω CC (59)55A457 (vw)460 (w)20318681.13671.646522722012.06822.8984ω CC (60) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
46A706 (ms)-6085590.067027.57335755570.322521.8820b CC (66)47A701 (w)-5565110.00050.27985064901.56540.6987b CO (65)48A682 (ms)-5424983.30781.81795044881.24180.6646 ω CH (61)49A-578 (s)4954552.38546.58754634492.07866.2511 ω CH (62)50A565 (w)-3923600.13991.58693563450.17901.1791t Rtrigd (60)51A-520 (w)3543254.41510.07723273174.28890.0645t Rsymd (61)52A501 (w)501 (w)3002761.21750.452729128284.05590.8050t R asymd (60)53A493 (w)-2892650.73270.47382792701.12230.7033 ω CC (58)54A482 (vw)-26524321.52251.19672702610.87210.7620 ω CC (59)55A457 (vw)460 (w)20318681.13671.646522722012.06822.8984 ω CC (60)56A426 (vw)-1871727.55360.36901771714.19930.0742 ω CO (6			. ,										
47 A 701 (w) - 556 511 0.0005 0.2798 506 490 1.5654 0.6987 b CO (65) 48 A 682 (ms) - 542 498 3.3078 1.8179 504 488 1.2418 0.6646 ω CH (61) 49 A - 578 (s) 495 455 2.3854 6.5875 463 449 2.0786 6.2511 ω CH (62) 50 A 565 (w) - 392 360 0.1399 1.5869 356 345 0.1790 1.1791 t Rtrigd (60) 51 A - 520 (vw) 354 325 4.4151 0.0772 327 317 4.2889 0.0645 t Rsymd (61) 52 A 501 (w) 501 (w) 300 276 1.2175 0.4527 291 282 84.0559 0.8050 t R asymd (60) 53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (59) 55 A													
48 A 682 (ms) - 542 498 3.3078 1.8179 504 488 1.2418 0.6646 ω CH (61) 49 A - 578 (s) 495 455 2.3854 6.5875 463 449 2.0786 6.2511 ω CH (62) 50 A 565 (w) - 392 360 0.1399 1.5869 356 345 0.1790 1.1791 t Rtrigd (60) 51 A - 520 (ww) 354 325 4.4151 0.0772 327 317 4.2889 0.0645 t Rsymd (61) 52 A 501 (w) 501 (w) 300 276 1.2175 0.4527 291 282 84.0559 0.8050 t R asymd (60) 53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (58) 54 A 482 (ww) - 265 243 21.525 1.1967 270 261 0.8721 0.7620 ω CC (59) 0.55													
49 A - 578 (s) 495 455 2.3854 6.5875 463 449 2.0786 6.2511 ω CH (62) 50 A 565 (w) - 392 360 0.1399 1.5869 356 345 0.1790 1.1791 t Rtrigd (60) 51 A - 520 (ww) 354 325 4.4151 0.0772 327 317 4.2889 0.0645 t Rsymd (61) 52 A 501 (w) 501 (w) 300 276 1.2175 0.4527 291 282 84.0559 0.8050 t R asymd (60) 53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (58) 54 A 482 (ww) - 265 243 21.5225 1.1967 270 261 0.8721 0.7620 ω CC (59) 55 A 457 (ww) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56			. ,										
50 A 565 (w) - 392 360 0.1399 1.5869 356 345 0.1790 1.1791 t Rtrigd (60) 51 A - 520 (vw) 354 325 4.4151 0.0772 327 317 4.2889 0.0645 t Rsymd (61) 52 A 501 (w) 501 (w) 300 276 1.2175 0.4527 291 282 84.0559 0.8050 t R asymd (60) 53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (58) 54 A 482 (vw) - 265 243 21.5225 1.1967 270 261 0.8721 0.7620 ω CC (59) 55 A 457 (vw) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 5			. ,										
51 A - 520 (vw) 354 325 4.4151 0.0772 327 317 4.2889 0.0645 t Rsym(f) 52 A 501 (w) 501 (w) 300 276 1.2175 0.4527 291 282 84.0559 0.8050 t Rasymd (60) 53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (58) 54 A 482 (vw) - 265 243 21.5225 1.1967 270 261 0.8721 0.7620 ω CC (59) 55 A 457 (vw) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58													. ,
52 A 501 (w) 501 (w) 300 276 1.2175 0.4527 291 282 84.0559 0.8050 t R asymd (60) 53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (58) 54 A 482 (vw) - 265 243 21.5225 1.1967 270 261 0.8721 0.7620 ω CC (59) 55 A 457 (vw) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57)													
53 A 493 (w) - 289 265 0.7327 0.4738 279 270 1.1223 0.7033 ω CC (58) 54 A 482 (vw) - 265 243 21.5225 1.1967 270 261 0.8721 0.7620 ω CC (59) 55 A 457 (vw) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57) 59 A - 277 (w) 131 120 1.6830 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
54 A 482 (vw) - 265 243 21.5225 1.1967 270 261 0.8721 0.7620 ω CC (59) 55 A 457 (vw) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57) 59 A - 277 (w) 131 120 1.6830 0.1357 121 117 0.0114 0.1234 CH ₃ twist (56) 60 A - 251 (w) 36 33 1.933													
55 A 457 (vw) 460 (w) 203 186 81.1367 1.6465 227 220 12.0682 2.8984 ω CC (60) 56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57) 59 A - 277 (w) 131 120 1.6830 0.1357 121 117 0.0114 0.1234 CH ₃ twist (56) 60 A - 251 (w) 36 33 1.933 0.1738 42 40 0.2795 0.3899 CH ₃ twist (57)													
56 A 426 (vw) - 187 172 7.5536 0.3690 177 171 4.1993 0.0742 ω CO (61) 57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57) 59 A - 277 (w) 131 120 1.6830 0.1357 121 117 0.0114 0.1234 CH ₃ twist (56) 60 A - 251 (w) 36 33 1.933 0.1738 42 40 0.2795 0.3899 CH ₃ twist (57)													
57 A - 385 (ms) 168 154 6.2440 0.1587 152 147 0.3022 0.0478 ω OH (58) 58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57) 59 A - 277 (w) 131 120 1.6830 0.1357 121 117 0.0114 0.1234 CH ₃ twist (56) 60 A - 251 (w) 36 33 1.933 0.1738 42 40 0.2795 0.3899 CH ₃ twist (57)													
58 A - 350 (vw) 146 134 1.6362 0.3496 130 126 0.0088 0.2160 CH ₃ twist (57) 59 A - 277 (w) 131 120 1.6830 0.1357 121 117 0.0114 0.1234 CH ₃ twist (56) 60 A - 251 (w) 36 33 1.933 0.1738 42 40 0.2795 0.3889 CH ₃ twist (57)		А		385 (ms)		154				147			
60 A - 251 (w) 36 33 1.933 0.1738 42 40 0.2795 0.3889 CH ₃ twist (57)	58	А	-	350 (vw)	146	134	1.6362	0.3496	130	126	0.0088	0.2160	
	59	A	-	277 (w)				0.1357					CH ₃ twist (56)
			-										

Abbreviations:

w-weak, s-strong. ms-medium strong, vw-very weak, vs-very strong, R-ring, b-bending, v-streching, symd-symmetric deformation, w-out-of-plane bending, asymd-antisymmetric deformation, trigd-trigonal deformation, ss-symmetric streching, ips-in-plane stretching, sb-symmetric bending, ipb-in-plane-bending, ipr-in-plane-rocking, ops-out-of-plane stretching, opb-out-of-plane bending, opr-out-of-planerocking,t-torsion.

218

Available online at www.globalresearchonline.net © Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

Devementere	Method/Basis set					
Parameters	HF/6-31+G(d,p)	B3LYP/6-31+G(d,p)				
Optimized global minimum Energy (Hartrees)	-422.7019	-425.4559				
Total energy(thermal), E _{total} (kcal mol ⁻¹)	131.644	124.074				
Heat capacity, C_v (cal mol ⁻¹ k ⁻¹)	37.645	40.051				
Entropy, S (cal mol ⁻¹ k^{-1})						
Total	99.135	100.731				
Translational	40.637	40.637				
Rotational	29.647	29.684				
Vibrational	28.852	30.410				
Vibrational energy, E _{vib} (kcal mol ⁻¹)	129.866	122.296				
Zero point vibrational energy, (kcal mol ⁻¹)	125.16194	117.28832				
Rotational constants (GHz)						
A	1.75750	1.73766				
В	1.26882	1.25180				
С	0.74697	0.73763				
Dipole moment (Debye)						
μ_x	0.1232	-0.0035				
μ_{y}	-1.4491	-1.4137				
μ _z	-0.0004	0.0256				
μ_{total}	1.4544	1.4140				

Table 3: Thermodynamic properties of 2,4,6-trimethylphenol.

In addition to that, CH₃ ops, out-of-plane stretch, and CH₃ opb, out-of-plane bending modes of the CH₃ group would be expected to be depolarized for asymmetry species. The C-H stretching in CH₃ occurs at lower frequencies than those of the aromatic ring (3100-3000cm⁻¹). The vibrations of the methyl group in the TMP are observed in the typical range reported earlier²¹. The asymmetric and symmetric stretching vibrations are observed in the ranges 3010-2970 and 2940-2900 cm⁻¹. In the present study, the CH3 symmetric and in-plane stretching frequencies are established at 3013, 2973, 2944, 2917 and 3019, 2980, 2918 cm⁻¹ in FTIR and Raman spectrum, respectively. We have observed the CH₃ in-plane bending modes of TMP at 1440, 1376, 1365 cm^{-1} and CH_3 symmetric bending modes at 1338, 1306, 1300 cm⁻¹ in infrared and Raman spectra. The CH₃ deformation modes mainly coupled with in-plane bending vibrations. The bands obtained at 762, 853, 932 cm^{-1} in IR and 765, 880, 920, 958 cm⁻¹ in Raman are assigned to CH₃ in-plane and out-of-plane rocking modes. The CH₃ out-of-plane stretching and out-of-plane bending modes are found at 2857, 2850, 2740 cm⁻¹ and 1196, 1160, 1150 cm⁻¹ in the experimental spectra, respectively. The assignment of band at 350, 277, 251 cm⁻¹ in the FT-Raman is attributed to CH₃ twisting modes. These assignments are substantiated by the reported literature²².

C–C vibrations

The C-C aromatic stretching vibrations gives rise to characteristic bands in both the observed IR and Raman spectra, covering the spectral range²³ from 1625 to 1400 cm⁻¹. Therefore, the C-C stretching vibrations of the title compound are found at 1740, 1728, 1612, 1488, 1446 cm⁻¹ in FTIR and 1720, 1640, 1604, 1495 cm⁻¹ in the FT-

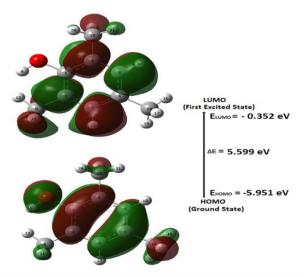
Raman spectrum and these modes are confirmed by their TED values. Most of the ring vibrational modes are affected by the substitutions in the aromatic ring of TMP. In the present study, the bands observed at 1031, 1012, 969 cm⁻¹ and 1010 cm⁻¹ in the FTIR and Raman spectrum, respectively, have been designated to ring in-plane bending modes by careful consideration of their quantitative descriptions. The ring out-of-plane bending modes of TMP are also listed in the Table 2. The reductions in the frequencies of these modes are due to the change in force constant and the vibrations of the functional groups present in the molecule.

C-O vibrations

The interaction of carbonyl group with other groups present in the system did not produce such a drastic and characteristics changes in the frequency of C-O stretch as did by the interaction of O-H stretch. In this present work, a strong IR band is observed at 1272 cm⁻¹ due to the stretching vibration between carbon and oxygen atoms which is in line with the literature²⁴. The IR band appeared at 701 cm⁻¹ in TMP has been designated to C-N in-plane bending vibration. The C-N out-of-plane bending vibration observed at 426 cm⁻¹ in IR spectrum. These assignments are also supported by the TED values.

First hyperpolarizability

The quantum chemistry based prediction of non-linear optical (NLO) properties of a molecule has an important role for the design of materials in modern communication technology, signal processing and optical interconnections²⁵. Especially organic molecules are studied because of their larger NLO susceptibilities arising π -electron cloud movement from donor to acceptor, fast

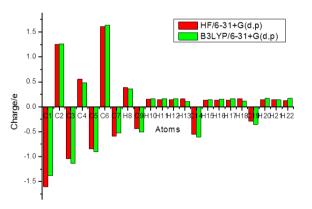

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

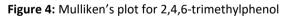
NLO response times, high laser damage thresholds and low dielectric constants. Although the organic molecules have these advantages, they have several NLO disadvantages, too: they have generally low thermal stability and they may undergo a facile relaxation to random orientation²⁶. In addition, in the UV–vis region, the low energy transitions result in a trade-off between the nonlinear efficiency and optical transparency²⁷. But the usage of organic molecules as ligands can overcome these disadvantages. The total static dipole moment μ , the average linear polarizability $\overline{\alpha}$, the anisotropy of the polarizability $\Delta \alpha$, and the first hyperpolarizability θ can be calculated by using the following Equations²⁵:

The calculated values of total static dipole moment μ , the average linear polarizability $\overline{\alpha}$, the anisotropy of the polarizability $\Delta \alpha$, and the first hyperpolarizability β using the DFT-B3LYP/6-31+G(d,p) method are 1.414 Debye, 16.307Å³, 1.3264Å³ and 2.8065×10⁻³⁰ e.s.u.⁻¹, respectively. The values of μ , $\overline{\alpha}$ and β obtained by Sun *et al.*²⁸ with the B3LYP method for urea are 1.373 Debye, 3.831 Å³ and 0.3729×10⁻³⁰ e.s.u.⁻¹, respectively. The first hyperpolarizability of TMP molecule is 7.5 times greater than that of urea. According to these results, the title compound may be a potential applicant in the development of NLO materials.

HOMO, LUMO analysis

The highest occupied molecular orbitals (HOMOs) and the lowest- lying unoccupied molecular orbitals (LUMOs) are named as frontier molecular orbitals (FMOs). The FMOs play an important role in the electric and optical properties, as well as in UV–Vis spectra and chemical reactions²⁹. The atomic orbital HOMO and LUMO compositions of the frontier molecular orbital for TMP computed at the B3LYP/6-31+G(d,p) are shown in Fig. 3, which reveals that the energy gap reflects the chemical activity of the molecule.




Figure 3: The atomic orbital HOMO and LUMO compositions of the frontier molecular orbital for 2,4,6-trimethylphenol

The calculations indicate that the title compound have 37 occupied MOs. The LUMO: of π nature, (i.e. benzene ring) is delocalized over the whole C-C bond. By contrast, the HOMO is located over OH group; consequently the HOMO \rightarrow LUMO transition implies an electron density transfer to C-C bond of the benzene ring and methyl groups from OH group. Moreover, these three orbitals significantly overlap in their position of the benzene ring for TMP. The LUMO as an electron acceptor represents the ability to obtain an electron. Moreover, a lower HOMO–LUMO energy gap explains the fact that eventual charge transfer interaction is taking place within the molecule.

Mulliken Population Analysis

The charge distribution on the molecule has an important influence on the vibrational spectra. The total atomic charges of TMP obtained by Mulliken³⁰ using HF and B3LYP methods with 6-31+G(d,p) basis set are represented in graphical form as shown in Fig. 4 and it gives us information about the charge shifts relative to TMP. More charge density was found at C2, C4 and C6 than that of other ring carbon atoms. The high positive charge at C2, C4 and C6 is due to the effect of electron releasing methyl group attached with these atoms. The electron donating character of the hydroxyl group in the title compound is demonstrated by a decrease of electron density on C1 atom. From the result it is clear that the substitution of hydroxyl and methyl groups in the aromatic ring leads to a redistribution of electron density.

Molecular electrostatic potential (MEP)

MEP is related to the electron density and is a very useful descriptor in understanding sites for electrophilic and nucleophilic reactions as well as hydrogen bonding interactions³¹. The electrostatic potential is also well suited for analyzing processes based on the "recognition" of one molecule by another, as in drug-receptor, and enzyme-substrate interactions, because it is through their potentials that the two species first "see" each other³². To predict reactive sites of electrophilic and nucleophilic attacks for the investigated molecule, MEP at the B3LYP optimized geometry was calculated as shown in Fig. 5.

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

The different values of the electrostatic potential represented by different colors; red represents the regions of the most negative electrostatic potential, blue represents the regions of the most positive electrostatic potential and green represents the region of zero potential. The color code of these maps is in the range between -0.05393 (deepest red) and +0.05393 (blue) in the title compound, where blue indicates the strongest attraction and red indicates the strongest repulsion. The negative (red and yellow) regions of MEP were related to electrophilic reactivity and the positive (blue) regions to nucleophilic reactivity. From the MEP diagram, it is evident that the negative charge covers the oxygen atom of hydroxyl group and the positive region is over the hydrogen atom of methyl groups. The more electro negativity in the oxygen atom of O-H group makes it the most reactive part in the molecule.

Figure 5: MEP map for 2,4,6-trimethylphenol.

Other molecular properties

Normally, the thermo dynamical analysis on aromatic compound is very important since they provide the necessary information regarding the chemical reactivity. On the basis of vibrational analysis at HF and B3LYP methods with 6-31+G(d,p) basis set, the standard statistical thermodynamic functions: heat capacity, zero point energy, entropy of TMP have been calculated and are presented in Table 3. The difference in the values calculated by both the methods is only marginal. Scale factors have been recommended for an accurate prediction in determining the zero-point vibration energy (ZPVE), and the entropy (S_{vib}) . The variation in the ZPVE seems to be insignificant. Dipole moment reflects the molecular charge distribution and is given as a vector in three dimensions. Therefore, it can be used as descriptor to depict the charge movement across the molecule. Direction of the dipole moment vector in a molecule depends on the centers of positive and negative charges. The total dipole moment of TMP determined by HF and B3LYP methods using 6-31+G(d,p) basis set are 1.4544 and 1.414 Debye, respectively. The total energy and the change in the total entropy of the compound at room temperature are also presented.

CONCLUSION

The optimized geometries, harmonic vibrational wavenumbers and intensities of vibrational bands of TMP have been carried out using the HF and B3LYP methods with the standard 6-31+G(d,p) basis set calculations. The theoretical results were compared with the experimental vibrations, which yield good agreement with the calculated values. From the optimized geometry analysis, we identified that B3LYP/6-31+G(d,p) level of calculation is closer to experimental findings when compared to HF/6-31+G(d,p) of calculation. The TED calculation regarding the normal modes of vibration provides a strong support for the frequency assignment. The calculated first order hyperpolarizability was found to be 2.806×10^{-30} esu, which is 7.5 times greater than reported in literature for urea. The HOMO and LUMO energy gap shows that charge transfer occur within the molecule, which are responsible for the bioactive property of the molecule. The MEP map shows the negative potential sites are on oxygen atom as well as the positive potential sites are around the hydrogen atoms. Furthermore, the thermodynamic and Mulliken charge analysis of the compound have been calculated in order to get insight into the compound.

REFERENCES

- Sundaraganesan N, Anand B, Meganathan C, Dominic Joshua B, FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of 2,3-difluoro phenol, Spectrochim. Acta, 68A, 2007, 561-566.
- 2. Evans JC, The vibrational spectra of phenol and phenol-OD, Spectrochim. Acta, 16A, 1960, 1382-1392.
- Jayanthi N, Cruz J, Pandiyan T, DFT studies on the phenol and thiophenol interaction on an undecagold cluster surface, Chem. Phys. Lett., 455, 2008, 64–71.
- Huang J, Huang K, Liu S, Luo Q, Tzeng W, Vibrational spectra and theoretical calculations of *p*-chlorophenol in the electronically excited S₁ and ionic ground D₀ states, J. Photochem. Photobiol. Chem., 193A, 2008, 245-253.
- Wang G, Gong X, Liu Y, Xiao H, A theoretical study on the vibrational spectra and thermodynamic properties for the nitro derivatives of phenols, Spectrochim. Acta, 74A, 2009, 569-574.
- Mahadevan D, Periandy S, Ramalingam S, Vibrational spectroscopy (FTIR and FTRaman) investigation using ab initio (HF) and DFT (B3LYP) calculations on the structure of 3-Bromo phenol, Spectrochim. Acta, 78A, 2011, 575-581.
- Albayrak Ç, Frank R, Spectroscopic, molecular structure characterizations and quantum chemical computational studies of (*E*)-5-(diethylamino)-2-[(2fluorophenylimino)methyl] phenol, J. Mol. Struct. 984, 2010, 214–220.
- Koşar B, Albayrak Ç, Cüneyt Ersanlı C, Odabaşoğlu M, Büyükgüngör O, Molecular structure, spectroscopic investigations, second-order nonlinear optical properties and intramolecular proton transfer of (E)-5-(diethylamino)-2-[(4-propylphenylimino)methyl]phenol: A

Available online at www.globalresearchonline.net

combined experimental and theoretical study, Spectrochim. Acta, 93A, 2012, 1–9.

- Demircioğlu Z, Albayrak Ç, Büyükgüngör O, Experimental (X-ray, FT-IR and UV–vis spectra) and theoretical methods (DFT study) of (E)-3-methoxy-2-[(ptolylimino)methyl]phenol, Spectrochim. Acta, 128A, 2014, 748–758.
- 10. Yurdakul Ş, Badoğlu S, An FT-IR and DFT study of the free and solvated 4-(imidazol-1-yl) phenol, Spectrochim. Acta, 150A, 2015, 614–622.
- 11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, GAUSSIAN 09, Revision A.02, Gaussian Inc, Wallingford CT, 2009.
- 12. Becke AD, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 1993, 5648-5652.
- 13. Lee C, Yang W, Parr RG, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B37, 1988, 785-789.
- Rauhut G, Pulay P, Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields, J. Phys. Chem. 99, 1995, 3093-3100.
- 15. Sundius T, Scaling of ab initio force fields by MOLVIB, Vib. Spectrosc. 29, 2002, 89-95.
- MOLVIB (V.7.0): Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807, 2002.
- 17. Frisch A, Nielson AB, Holder AJ, Gaussview user manual, Gaussian Inc., Pittsburgh, PA, 2009.
- Yadav BS, Ali I, Kumar P, Yadav P, FTIR and laser Raman spectra of 2-hydroxy-5-methyl-3-nitropyridine, Indian J. Pure Appl. Phys. 45, 2007, 979-983.
- Subramanian N, Sundaraganesan N, Jayabharathi J, Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-

hydroxybenzylidene)hydrazine by density functional method, Spectrochim. Acta, 76A, 2010, 259-269.

- 20. Sangeetha M, Mathammal R, Mekala R, Crystal Growth and Characterization of p-Arsanilic Acid for Pharmaceutical Application with Theoretical Conformational Study, Int. J. Pharm. Sci. Rev. Res. 34(1), 2015, 47-54.
- 21. Monicka JC, James C, FT-Raman and FTIR spectra, DFT investigation of the structure and vibrational assignment of mefenacet, J. Mol. Struct., 1095, 2015, 1-7.
- Arjunan V, Mohan S, Fourier transform infrared and FT-Raman spectra, assignment, *ab initio*, DFT and normal coordinate analysis of 2-chloro-4-methylaniline and 2chloro-6-methylaniline, Spectrochim. Acta, 72A, 2009, 436-444.
- 23. Socrates G, Infrared and Raman Characteristic Group Frequencies – Tables and Charts, third ed., Wiley, Chichester, 2001.
- Jeyavijayan S, Arivazhagan M, Study of density functional theory and vibrational spectra of hypoxanthine, Indian J. Pure Appl. Phys. 48, 2010, 869-874.
- 25. Sajan D, Joe IH, Jayakumar VS, Zaleski J, Structural and electronic contributions to hyperpolarizability in methyl phydroxy benzoate, J. Mol. Struct. 785, 2006, 43-53.
- 26. Powel CE, Humphrey MG, Nonlinear optical properties of transition metal acetylides and their derivatives, Coord. Chem. Rev. 248, 2004, 725-756.
- Thanthiriwatte KS, de Silva KMN, Non-Linear Optical Properties of Novel Fluorenyl Derivatives-Ab Initio Quantum Chemical Calculations, J. Mol. Struct. (Theochem.) 617, 2002, 169-175.
- Sun YX, Hao QL, Wei WX, Yu ZX, Lu LD, Wang X, Wang YS, Experimental and density functional studies on 4-(3,4dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4trihydroxybenzylideneamino)antipyrine, J. Mol. Struct. (Theochem.) 904, 2009, 74-82.
- 29. Fleming I, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
- Mulliken RS, Electronic Population Analysis on LCAO-MO Molecular Wave Functions, J. Chem. Phys. 23, 1955, 1833-1840.
- Murray JS, Sen K, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, 1996, pp. 7–624.
- 32. Scrocco E, Tomasi J, Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials, Adv. Quantum Chem. 11, 1978, 115–121.

Source of Support: Nil, Conflict of Interest: None.

International Journal of Pharmaceutical Sciences Review and Research

© Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.

Available online at www.globalresearchonline.net