Synthesis of Antibacterial and Anticancer Substances by Bacillus sp. PRV3 and Bacillus sp. PRV23, an Intestinal Probiotics of Indian Fresh Water Fish

S. Vijayaram4, J. Philip Robinson3, S. Kannan**
Department of Environmental Studies, School of Energy Sciences, Madurai Kamraj University, Madurai, 625 021, India
Department of Biotechnology, K.S.Rangasamy College of Technology, Tiruchengode - 637 215
*Corresponding author’s E-mail: vijayarambiotech@gmail.com

Received: 10-03-2017; Revised: 05-04-2017; Accepted: 17-04-2017.

ABSTRACT

Probiotics are “live microorganisms administered in adequate amounts that confer a beneficial health effect on the host.” The host organisms and bacterial probiotic products are available for human and domestic animal consumption towards the stimulation of immune reactions. In this study, eight potent Probiotics were isolated from gut content of fishes namely Hypselobarbus kolus, Channa murulius, Punitus melanampany, Nemacheilus menoni and Oreochromis mossambicus obtained from tribal’s fish catchers of Periyar Lake, Kerala. Two probiotic bacteria, namely PRV3 and PRV23 expressed maximum effect when allowed to undergo various tests namely acid tolerance, bile salt tolerance, hemolytic assay, auto-aggregation, antibacterial activity and antibiotic susceptibility tests. With this regard, the results by PRV3 and PRV23 strains and their bioactive compounds production was identified by FT-IR, HPTLC, HPLC and GC-MS. The antimicrobial and anticancer effects of bioactive compounds revealed that the bacteria derived compounds have maximum activity.

Keywords: Fish gut. Probiotics. Bioactive compounds. Anticancer activity. Anti-microbial activity.

INTRODUCTION

Aquatic animals in large-scale production facilities are exposed to stress, diseases and deterioration of the environmental conditions which lead to serious economic losses. Among the numerous intestinal bacteria that beneficially affect the host intestine, some of them could be recognized as Probiotics. During the last decade, chemical additives and veterinary medicines, especially antimicrobial agents were used to prevent and control diseases in aquaculture. Bacterial infections are a major causal agent of mortality in fish hatcheries. Microorganisms are one of the most important authors of novel bioactive compounds such as antibiotics, immunosuppressants, antiparasitics, antitumor, hypcholesterolemic agents and enzyme inhibitors. A promising alternative approach for controlling fish diseases is the economic consumption of probiotics or good bacteria, which control pathogens through a diversity of mechanisms. The function of probiotics, in human and animal nutrition and has been applied to aquaculture. Bacillus subtilis possess antitumor and immunomodulatory activities. The production of antimicrobial substances by Bacillus species isolated from Japanese costal fish, and their use as a biocontrol agent. There are a wide range of microalgae (Tetraselmis), yeast (Debaryomyces, Phaffia and Saccharomyces), gram positive (Bacillus, Lactococcus, Micrococcus, Carnobacterium, Enterococcus, lactobacillus, Streptococcus, Weissella) and gram negative bacteria (Aeromonas, Alteromonas, Photobacterium bacterium, Pseudomonas and Vibrio). The antagonistic activity of Pseudomonas against a number of pathogens (e.g. Aeromonas and Vibrio sp.). Different probiotic effects addressed for Bacillus include production of antibiotics, providing protection against wide range of pathogenic bacteria. Microbial-based therapy of cancer is one of the emerging cancer treatment modalities. Important advancements have been made to study and develop live bacteria or bacterial products such as proteins, enzymes, immunotoxins and secondary metabolites of bacteria and fungi which specifically target cancer cells and cause tumor regression through growth inhibition, cell cycle arrests or apoptosis induction. Therefore, the aim of the present study is isolation and characterization of probiotic bacterial bioactive compounds and using them for biotherapeutic applications.

MATERIALS AND METHODS

Sample collection and screening of bacteria from fish gut

Live fish samples were collected from the Periyar lake, Kerala, South India. The collected samples were transferred to sterilized polyethylene bags containing habitat water. Among the selected fishes Hypselo barbuskolus (Koora), Oreochromis mossambicus (Tilapia) and Punitus melanampany (Kudukonda) are carnivorous, while Channa murulius (Cherumeen) and Nemacheilus menoni (Ayira) are herbivorous. The samples were washed with sterile distilled water to remove any undesired dusty materials. Then, the supernatant was taken and serially diluted with sterile distilled water. The colonies were separated using quadrant streaking method.

The isolated microorganisms were characterized by physiological and biochemical tests such as Gram reaction, catalase test, oxidase test, Simmons citrate test, Indole test, amylase test and carbohydrate fermentation
test according to the criteria of Bergey’s Manual of Systemic Bacteriology.

DNA isolation and 16S rDNA Sequencing

Genomic DNA was isolated by using the HIPURA Genomic DNA purification Kit. Later, bacterial 16S rDNA was amplified from the extracted genomic DNA by using the universal bacterial 16S rDNA primers, forward primer- (5’-AGAGTTTTGATCCTGGTGCTCAG-3’) and reverse primer- (5’-GTTACCTTGTTACGACTT-3’) (Lane et al. 1991). PCR was performed on a 50-μl reaction mixture containing 1 μl (10 ng) of template, 0.5μg of each primer, 1.5 mM MgCl₂, and 50mM dNTP (deoxynucleoside triphosphate), 1U of Taq-polymerase and buffers as recommended by the manufacturer (Fermentas, Hanover, Germany) with the cycling parameters typically being 94°C for 60 sec, 55°C for 1min, and 72°C for 2 min (35 cycles) using Cyber-Lab® PCR system. PCR products were examined by electrophoresis in 1.5% (w/v) Agarose gel and sequenced. This sequence was then used for BLAST analysis. The 16S rDNA sequences were used for phylogenetic analysis using neighbor-joining method in MEGA7.0.

Screening of Probiotic properties

Acid and bile salt tolerance

Therefore, in this study acid tolerance property of the isolate was determined by following the procedure described by. The isolate was grown in nutrient broth for 24 hours at 30°C. The growth of bacteria was measured at 560 nm and the survival percentage of strain to different pH was calculated. The bile salt tolerance of the isolate was determined as per. Nutrient broth (100 ml) supplemented with different concentrations of bile salt (wt/vol. ox gall) was prepared and inoculated with one ml (3×10⁷ cells ml⁻¹) of the isolate and incubated at 30°C. After incubation the growth of bacteria was measured (A₅₆₀ nm) at different time intervals and the survival percentage of the isolate was calculated.

Auto-aggregation assay

Auto-aggregation assay was performed as per the procedure described by with certain modifications. Isolates were grown in nutrient broth for 24 h at 30°C. The cells were pelleted, washed and dissolved in PBS (pH 7.0) to get an absorbance of 0.5 at 600 nm. The bacterial suspension was incubated at 30°C and absorbance of upper suspension was measured at different time intervals (0, and 1 h). Auto aggregation percentage was expressed as: A₀ - (At /A₀) ×100. At represents the absorbance at different time intervals and A₀ represents the absorbance at 0 h. Triplicates were maintained for all the experiments in this study unless otherwise represented.

Antibiotic susceptibility test

The susceptibility of isolate to different antibiotics was determined by placing standard antibiotic discs (Hi Media, Mumbai) on the surface of Muller Hinton agar medium seeded with a lawn of the isolate. Plates were observed for the zone of inhibition after 24 h incubation at 30°C.

Preparation of crude cell free extracts

The crude cell free extract of each of the selected isolates were obtained by first growing them in separate sets of 50 ml of nutrient broth at 37 ± 2°C for 16 to 18 h culture, followed by centrifugation at 10,000 rpm for 15 min at 4°C. After centrifugation 2:1 ratio ethyl acetate was added to separate bioactive compounds and subsequent filtration of each supernatant through 0.2 μm membrane was performed under aseptic conditions.

Fourier trans form infra-red spectra

IR spectrum was recorded in spectrophotometer (Shimadzu), the active principle was mixed with KBr and pellet technique was adopted to record the spectra.

High performance liquid chromatography (HPLC)

The 500 μl of the cell free extract was injected into the loading site and was analyzed with high performance liquid chromatography. Analytical HPLC was carried out on a high performance chromatography system equipped with Clarity model CSW 32 software and alpha isocratic pump (Analytical instrumentation, India) and Gracesmart RP-18 5 μm column (250 mm x 4.6 mm). The mobile phase consisted of methanol: water in the ratio 6:4 with a flow rate of 1 ml min⁻¹. The sapphire detector monitored absorption at 254 nm. A blank solvent run was done prior to the sample run in order to remove erroneous readings.

High Performance Thin Layer Chromatography (HP-TLC)

Samples were vortexed for 1 min immediately following the addition of each solvent, and allowed to stand for about 1 h, with occasional shaking by hand. Phase separation of the biomass-solvent mixtures was achieved by adding Chloroform and Water to obtain a final ratio of Chloroform, Methanol, and Water as 1:1:0.9 by volume. The compounds extract recovered from the lower chloroform phase was dried using a rotary evaporator and finally dissolved in chloroform. Bioactive compounds, content in supernatant were first analyzed by thin layer chromatography (TLC) on precoated silica gel (20×20 cm, layer thickness 0.25 mm). The plates were developed by Hexanes-Ethyl acetate (6:1, v/v). The spots were visualized by iodine fumes. For the purification of Bioactive compounds, preparative TLC was performed on a precoated silica gel (20×20 cm, layer thickness 0.5 mm), and the plates were developed by the same solvents mentioned above. The target band from the plate was scraped, the compounds were extracted four times with Chloroform-Methanol (1:1, v/v), and the combined supernatants were brought to dryness using a rotary evaporator and finally re-dissolved in chloroform.

Gas Chromatography Mass Spectrometry (GC-MS) Analysis

The bioactive compounds were extracted from the harvested bacterial culture by centrifugation at 6000 rpm.
for 15 min in 4°C condition. The centrifuged cell supernatant was frozen overnight at -20 °C. Further the purification was done by chromatographic separation method and it was carried out with GC-MS-QP 2010 and the specifications of the column: Db 30.0 column, the diameter 0.25 μm × 0.25 μm thickness. The oven temperature was programmed for the following conditions: from 70°C to 200°C with an increase of 10°C / min (isothermal for 5 minutes), in continuation the temperature 5°C / min to 280°C and ending with a 35 minute isothermal at 280°C. Mass spectra were measured at 70 eV; scan interval of 0.5 seconds, scan ranges from 40–
1000 m / z. Helium was used as a carrier gas at 99.99 % and the pressure flow was maintained at 1.0 ml / min and thus the retention time, mass spectrum and the concentration of extracts were obtained.

Therapeutic screening of secondary metabolites

Antibacterial activity

The antibacterial activity of the Bioactive compounds were measured using agar disc diffusion assay against human pathogens such as Klebsiella (MTCC7407), E.coli (MTCC1303), Serratia (MTCC7103), Proteus (MTCC9493), Vibrio cholerae and the Fish pathogens such as Vibrio harveyi, Vibrio parahaemolyticus.

Cell lines

For the cytotoxicity studies the following cell lines were obtained from National Centre for Cell Science (NCCS), Pune. Human cervical cancer cell line (HeLa), Breast cancer cell line (MCF-7) and Vero cell line (Normal) were cultured in Eagles Minimum Essential Medium containing 10% Fetal bovine serum (FBS). The cell lines were maintained at the following culture conditions: incubated at 37°C, supplemented with 5% CO2 and 95% air and the relative humidity was 100%.

Cytotoxicity assay

The morphological changes of the above mentioned cell lines was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay method. The MTT added to the medium at the final concentration was 0.5 mg/ml and further incubated for 4h in a humidified atmosphere at 37 °C with 5% CO2 The growth media was removed from the wells leaving formazone crystals at the bottom, and the crystals were further dissolved in 200 μl with dimethyl sulfoxide. The resulted absorbance was recorded at 570 nm immediately. Optical density (OD) values of each well were normalized against the control wells without treatment.

RESULTS AND DISCUSSION

Isolation and characterization of probiotic bacteria from fish gut

The water probiotics contain multiple bacterial strains like Bacillus subtilis, B.licheniformis, Nitrobacter sp., Aerobacter sp., and Saccharomyces cerevisiae while feed probiotics contain Bacillus sp., Lactobacillus sp. or Saccharomyces cerevisiae. These are reported to give better survival and growth and improve the protective response especially in the larval stages. In the present study, fresh water fish species namely Hylaeobacterbuskulos (Kooralfish), Oreochromis mossambicus (Tilapia), Punitus melanampyx (Kudukonda), Channamurulis (Cherumeen), Nemacheilusmenoni (Ayira), were collected 8 species are Bacillus sp one sp Pseudomonas sp sp and finally Enterobacter. In the present study, fresh water fish species namely Hylaeobacterbuskulos (Kooralfish), Oreochromis mossambicus (Tilapia), Punitus melanampyx (Kudukonda), Channamurulis (Cherumeen), Nemacheilus menoni (Ayira), were collected 6 species are Bacillus sp one sp Pseudomonas sp sp and finally Enterobacter sp. (Fig.1:Table S1).

Supplementary table S1: Morphological, biochemical and physiological characteristics of the isolates from Periyar lake

Among them, Eight bacterial strains were considered as probiotic based on their hemolytic, acid and bile tolerance properties. Survival in extremely low pH is one of the major selection criteria for probiotic strains.

Our results were well accordance with the results who reported that the lactobacillus casei exhibited higher survival rate at higher pH value (2.0). This is due to fact that the percentage of viability increases while increasing the pH value. The acid tolerance test suggest that freshwater ecosystem play an vital role for the bacterial cells to be able to adapt the stress condition. However, Lac rhamnosus strains isolated from Parmigiano Reggiano cheese were able to survive at bile salt concentration of 10,000, 15,000 and 20,000 ppm after 48 hour of incubation at 37°C.
Twenty two bacterial strains were isolated from fish gut. Initial studies revealed that all the isolated strains were gram positive and rod shaped (Fig. 1A).

The acid tolerance test suggests that freshwater ecosystem play an vital role for the bacterial cells to be able to adapt the stress condition. Bacterial isolates, while increasing the pH slightly up to 2.5, there was a slight increases in the optical density was noticed for most of the bacterial isolates. This disclosed that the growth of bacteria has slightly increased in accordance with slight increase in the pH further enhancement in the pH values from 2.5 to 3.5 and 4.5 resulted in significant increment in the optical density values irrespective of the all bacterial isolates which procured that bacterial growth was superior at higher pH values (3.5 and 4.5) over lower pH values (1.5 and 2.5).

The result of the acid tolerance test for the bacterial isolates fish sp collected from Periyar lake Although in the stomach, the pH level is as low as 1.5, in most in vitro assays pH 4.5 has been preferred. For selection, the strains resistant to low pH used medium buffered with PBS to corresponding pH. The probiotic bacterial strains were cultured on medium with varying pH (1.5, 2.5, 3.5 and 4.5) for three hours (median log phase) to study the...
Acid tolerance effect on their growth (Table -2A). Bacterial isolates, while increasing the pH slightly up to 2.5, there was a slight increase in the optical density was noticed for most of the bacterial isolates. This disclosed that the growth of bacteria has slightly increased in accordance with slight increase in the pH further enhancement in the pH values from 2.5 to 3.5 and 4.5 resulted in significant increment in the optical density values irrespective of the all bacterial isolates which procured that bacterial growth was superior at higher pH values (3.5 and 4.5) over lower pH values (1.5 and 2.5). The result of the acid tolerance test for the bacterial isolates fish sp collected from Periyar lake Bile salts are toxic for living cells because they disrupt the structure of cell membranes. Tolerance to bile is considered one of the essential properties required for probiotic bacteria to survive in the small intestine 22. According to this study, Based on our observation the bacterial strains were subjected bile salt test to elucidate their growth tendency at different bile salt concentrations of 0.3%, 0.6%,1% and the observed results are furnished. At high bile salt concentration of 0.6%, 1% all the bacterial isolates showed lower optical density values because of high resistance induced by the higher concentration of bile salt for the bacterial growth.

Nevertheless the optical density values of bacterial isolates was considerably improved at lower bile salt concentration of 0.3% which could be inferred that lower concentration of bile salt favour the bacterial growth of all bacterial isolates. The result of bacterial isolates belongs to Periyar Lake. Bile salt concentration is important for growth of the intestinal bacteria. The suitable bile salt concentration is 0.3 w/v. In our study, the probiotic bacteria were made to grow at various concentrations (0.3%, 0.6% and 1%). And the bacterial growth was observed by using UV-Visible spectrophotometer at 600 NM. The isolates were more in 0.3 % of bile salt, whereas growth at 0.6 % and 1.0 % bile salts were less [Table -2B]. According to this study, Based on our observation the bacterial strains were subjected bile salt test to elucidate their growth tendency at different bile salt concentrations of 0.3%, 0.6%, 1% and the observed results are furnished. At high bile salt concentration of 0.6%, 1% all the bacterial isolates showed lower optical density values because of high resistance induced by the higher concentration of bile salt for the bacterial growth.

Nevertheless the optical density values of bacterial isolates was considerably improved at lower bile salt concentration of 0.3% which could be inferred that lower concentration of bile salt favour the bacterial growth of all bacterial isolates. The result of bacterial isolates belongs to Periyar Lake. Bile salt concentration is important for growth of the intestinal bacteria. The suitable bile salt concentration is 0.3 w/v. In our study, the probiotic bacteria were made to grow at various concentrations (0.3%, 0.6% and 1%). And the bacterial growth was observed by using UV-Visible spectrophotometer at 600 NM. The isolates were more in 0.3 % of bile salt, whereas growth at 0.6 % and 1.0 % bile salts were less [Table -2B]. According to this study, Based on our observation the bacterial strains were subjected bile salt test to elucidate their growth tendency at different bile salt concentrations of 0.3%, 0.6%, 1% and the observed results are furnished. At high bile salt concentration of 0.6%, 1% all the bacterial isolates showed lower optical density values because of high resistance induced by the higher concentration of bile salt for the bacterial growth.

Nevertheless the optical density values of bacterial isolates was considerably improved at lower bile salt concentration of 0.3% which could be inferred that lower concentration of bile salt favour the bacterial growth of all bacterial isolates. The result of bacterial isolates belongs to Periyar Lake. Bile salt concentration is important for growth of the intestinal bacteria. The suitable bile salt concentration is 0.3 w/v. In our study, the probiotic bacteria were made to grow at various concentrations (0.3%, 0.6% and 1%). And the bacterial growth was observed by using UV-Visible spectrophotometer at 600 NM. The isolates were more in 0.3 % of bile salt, whereas growth at 0.6 % and 1.0 % bile salts were less [Table -2B]. According to this study, Based on our observation the bacterial strains were subjected bile salt test to elucidate their growth tendency at different bile salt concentrations of 0.3%, 0.6%, 1% and the observed results are furnished. At high bile salt concentration of 0.6%, 1% all the bacterial isolates showed lower optical density values because of high resistance induced by the higher concentration of bile salt for the bacterial growth.

Nevertheless the optical density values of bacterial isolates was considerably improved at lower bile salt concentration of 0.3% which could be inferred that lower concentration of bile salt favour the bacterial growth of all bacterial isolates. The result of bacterial isolates belongs to Periyar Lake. Bile salt concentration is important for growth of the intestinal bacteria. The suitable bile salt concentration is 0.3 w/v. In our study, the probiotic bacteria were made to grow at various concentrations (0.3%, 0.6% and 1%). And the bacterial growth was observed by using UV-Visible spectrophotometer at 600 NM. The isolates were more in 0.3 % of bile salt, whereas growth at 0.6 % and 1.0 % bile salts were less [Table -2B]. According to this study, Based on our observation the bacterial strains were subjected bile salt test to elucidate their growth tendency at different bile salt concentrations of 0.3%, 0.6%, 1% and the observed results are furnished. At high bile salt concentration of 0.6%, 1% all the bacterial isolates showed lower optical density values because of high resistance induced by the higher concentration of bile salt for the bacterial growth.

Nevertheless the optical density values of bacterial isolates was considerably improved at lower bile salt concentration of 0.3% which could be inferred that lower concentration of bile salt favour the bacterial growth of all bacterial isolates. The result of bacterial isolates belongs to Periyar Lake. Bile salt concentration is important for growth of the intestinal bacteria. The suitable bile salt concentration is 0.3 w/v. In our study, the probiotic bacteria were made to grow at various concentrations (0.3%, 0.6% and 1%). And the bacterial growth was observed by using UV-Visible spectrophotometer at 600 NM. The isolates were more in 0.3 % of bile salt, whereas growth at 0.6 % and 1.0 % bile salts were less [Table -2B]. According to this study, Based on our observation the bacterial strains were subjected bile salt test to elucidate their growth tendency at different bile salt concentrations of 0.3%, 0.6%, 1% and the observed results are furnished. At high bile salt concentration of 0.6%, 1% all the bacterial isolates showed lower optical density values because of high resistance induced by the higher concentration of bile salt for the bacterial growth.
harmful bacteria. The culture PRV23 *Bacillus* sp showed the highest auto-aggregation activity (94.5%) and the culture Prv3 Bacillus sp had the lowest (76.6 %). These antibiotic resistant strains could create a risk to human health as there is a chance of horizontal gene transfer. The auto aggregation test was performed to found out the growth of bacterial isolates in the absence of growth medium using PBS solution. The results of the aggregation tests for the fish 8 bacterial isolates from Periyar lake. The higher result activity for auto aggregation test for Periyar lake isolates (PRV3 and PRV23) This could be attributed to the fact that the bacterial isolates of current concern highly dependent on nutrient supplementation. Collado et al. (2007) stated that aggregation is useful for preliminary screening to identify the potent probiotic strains suitable for food, human, or animal use. Thus, the higher aggregation property of the culture *Enterobacter* MBS1 represents its characteristic feature for interaction with pathogens, which is of importance from the point of view of both food preservation and the therapeutic impact of food on intestinal microbiota. The auto aggregation test was performed to found out the growth of bacterial isolates in the absence of growth medium using PBS solution. The results of the aggregation tests for the fish eight bacterial isolates from Periyar lake. The higher result activity for auto aggregation test for Periyar Lake isolates (PRV3, PRV23) this could be attributed to the fact that the bacterial isolates of current concern highly dependent on nutrient supplementation.

On the other hand, antibiotics inhibit or kill beneficial microorganisms and thus, disturb the microbiological balance of gut flora. Also, use of antibiotics has led to the immune suppression in animals and harmful effects on the environment and concerns on food safety. It is reported that fish ingest only 20–30% antibiotics applied in the farm and rest reach out to the environment. Besides, the antibiotics ingested by aquatic animals may be excreted as metabolites which may also harmful to the animal and human consumers. In this respect of, 14 probiotic bacterial isolates were used against selected antibiotic susceptibility test. Among the probiotic bacterial strains the highest antibiotic activity was noticed for the bacillus (prv5, mbs1, k1, prv4 and prv 20) is the highest antibiotic susceptibility test against different type types of antibiotic namely penicillin, Cephalothin, tetracycline, Lincomycin and Amoxicillin with zone of inhibition. In this respect of, eight probiotic bacterial isolates were used against selected antibiotic susceptibility test. Among the probiotic bacterial strains the highest antibiotic activity was noticed for the bacillus (prv5, mbs1, k1, prv4 and prv 20) is the highest antibiotic susceptibility test against different type types of antibiotic namely penicillin, Cephalothin, tetracycline, Lincomycin and Amoxicillin with zone of inhibition. In the current study, identification of resistance and susceptibility properties in probiotic bacteria are used for further studies (Fig. 2D).

Bioactive compounds were extracted from the two probiotic bacterial isolates that showed higher activity and are used for therapeutic applications.

Figure 2: Probiotic characterization analysis of eight isolates from fish gut. A is acid tolerance test for probiotic bacteria. B is bile salt concentration tests for probiotic bacteria C is autoaggregation test for probiotic bacteria D is antibiotic susceptibility tests against probiotic bacteria E is antibacterial activity tests for clinical pathogens F is antibacterial activity tests for fish pathogens.
Characterization of bioactive compounds from cell free extract

The FTIR spectral analysis showed the characteristic features of aliphatic compound with one or more C=C groups. The major peaks are at 1020.38 (C-H) stretch, 1247.99 (C=N) stretch, 1637.62 (C=C), 2075.47 (C=O) stretch and 3460.41 cm\(^{-1}\) that can be attributed to O-H stretch. Several earlier studies reported that some *Bacillus* strains could produce bacteriocins or bacteriocin-like substances to kill bacterial pathogens \(^{27}\). The results of FTIR analysis confirmed the presence of phenol, alkanes, aldehyde, Secondary alcohol, amino acid, aromatic amines and halogen compound. It is believed that crude extracts from bacteria are more biologically active than isolated compounds due to their synergistic effects. The FTIR spectral analysis showed the characteristic features of aliphatic compound with one or more C=C groups. The major peaks are at 1020.38 (C-H) stretch, 1247.99 (C=N) stretch, 1637.62 (C=C), 2075.47 (C=O) stretch and 3460.41 cm\(^{-1}\) that can be attributed to O-H stretch. (Table 2; Fig. S1).

**Table 2: IR spectrum analysis from crude cell free extract Prv3 and Prv23.*

<table>
<thead>
<tr>
<th>peak value</th>
<th>Assignment and Intensity</th>
<th>Functional groups</th>
<th>peak value</th>
<th>Assignment and Intensity</th>
<th>Functional groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>366.49</td>
<td>(C=O)Stretch</td>
<td>Carboxylic acid</td>
<td>1020.38</td>
<td>(C-H)Stretch</td>
<td>Aliphatic amines</td>
</tr>
<tr>
<td>1244.13</td>
<td>(C=O)Stretch</td>
<td>Alkenes</td>
<td>1247.99</td>
<td>(C=N)Stretch</td>
<td>Aliphatic amines</td>
</tr>
<tr>
<td>1415.8</td>
<td>(CH2 -CH3)</td>
<td>Alkyl halides</td>
<td>1637.62</td>
<td>(C=C) stretch</td>
<td>Amines</td>
</tr>
<tr>
<td>1635.9</td>
<td>(N-H)stretch</td>
<td>Amines</td>
<td>2075.47</td>
<td>(C=O)stretch</td>
<td>Alkenes</td>
</tr>
<tr>
<td>2073.55</td>
<td>(C=C)stretch</td>
<td>Nitriles</td>
<td>3460.41</td>
<td>(O-H)stretch</td>
<td>Alcohols,phenols</td>
</tr>
<tr>
<td>3431.48</td>
<td>(O-H) stretch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identification of compounds by HPLC is a crucial part of any HPLC assay. In order to identify any compound by HPLC, a detector must first be selected. Once the detector is selected and is set to optimal detection settings, a separation assay must be developed. The parameters of this assay should be such that a clean peak of the known sample is observed from the chromatograph. The identifying peak should have a reasonable retention time and should be well separated from extraneous peaks at the detection levels which the assay will be performed. UV detectors are popular among all the detectors because they offer high sensitivity. HPLC results for PRV3, PRV23, SVSK2 and SVSK5 strains bioactive compounds. Totally ten peaks were observed in each bacterial cell free extracts and represents the Rt value of each peaks. Fig. 3 shows HPLC results for PRV3 and PRV23 strains bioactive compounds. Totally ten peaks were observed in each bacterial cell free extracts and table 2 represents the Rt value of each peaks.

Natural products are a rich source of valuable medicinal agents. More than half of the currently available drugs are natural or related compounds \(^{29}\). 3,5-Dihydroxy-4-isopropylstilbene (DHPS) (also named 2-isopropyl-5-(2-phenylethyl)-benzene-1,3-diol) belongs to the stilbene family and was first identified as a bacterial metabolite of the antimicrobial compound \(^{30}\). In addition HPTLC was used for the assessment of the effectiveness of the fractionation step shows Rf values and color of all fractions of PRV3 and PRV23 samples. Nevertheless, it is evident that the secondary metabolites of PRV3 and PRV23 may include some potent chemotherapeutic substance notably antibiotics mediated by free radical
scavenging effect, antioxidant effect and some potent anticancer principles that includes bioactive compounds (Hptlc Table 3).

Figure 3: The selected probiotic bacterial isolates are used to carried out HPLC analysis. Two bacterial sp(PRV3 and PRV23) crude cell free extracts are using to identification of peaks, mass spectrum, retention time.

This compound is commonly used as a food additive due to its antioxidant activity \(^2^8\), however, it is reported to also have antimicrobial activity \(^2^9\). The mechanism of toxicity to microorganisms, of this and other hydrocarbons, was discussed in the comprehensive review by \(^2^8\). It is obvious that the active compounds extracted are phenolic compounds. However, coumarin, caffeic acid and some unknown compounds were also found in the samples of PRV3 and PRV23 Table 2.

<table>
<thead>
<tr>
<th>Hptlc Table 3: Identification of bioactive compounds from crude cell free extract PRV3 and Prv23</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRV3</td>
</tr>
<tr>
<td>0.72</td>
</tr>
<tr>
<td>0.83</td>
</tr>
<tr>
<td>0.69</td>
</tr>
<tr>
<td>0.44</td>
</tr>
<tr>
<td>0.66</td>
</tr>
<tr>
<td>0.79</td>
</tr>
<tr>
<td>0.81</td>
</tr>
<tr>
<td>PRV23</td>
</tr>
<tr>
<td>0.65</td>
</tr>
<tr>
<td>0.58</td>
</tr>
<tr>
<td>0.81</td>
</tr>
<tr>
<td>0.79</td>
</tr>
<tr>
<td>0.85</td>
</tr>
<tr>
<td>0.69</td>
</tr>
<tr>
<td>0.86</td>
</tr>
</tbody>
</table>

The microbial extracts have served as a valuable source of diverse molecules in drug discovery efforts and let to the isolation of several important drugs \(^3^1\). Bioactive compounds overproduction was attributed to stress conditions such as alkaline pH, oxidative stress and cell wall stresses \(^3^2\). The biochemical structure of Bioactive compounds (Figure 2H). Because of a double bonded structure of six CH3 compounds the isoprenoid may have
strong antioxidant effect and thus they can act like a natural antibiotic. It is to be noted that bioactive compounds have been proposed as a chemo preventive substance that protects from cancer. The identification of bioactive compounds was carried out by using GC MS analysis. The crude cell free extracts of selected strains from Periyar lake (PRV3, PRV23) sample some of the bioactive compounds are similarly found in the both field isolates (Neopentyl Glycol, Phenol, 2,4-Bis(1,1-Dimethylthyl), Methoxyacetic Acid, Hentriacontane, Phthalic Acid). (Table 4).

Table 4: GC MS analysis of crude cell free extract PRV3 and PRV 23.

<table>
<thead>
<tr>
<th>S.N.o</th>
<th>Cds</th>
<th>M.Formula</th>
<th>Act</th>
<th>Ref</th>
<th>S.N.o</th>
<th>Cds</th>
<th>M.Formula</th>
<th>T.App</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Propanoic Acid, Ethyl Ester</td>
<td>C\textsubscript{5}H\textsubscript{10}O\textsubscript{2}</td>
<td>Anti Diabetic Activity</td>
<td>Anti Oxidant Antitubercular Activity Antimalarial Activity</td>
<td>Vytautas Mickevičius et al. 2013</td>
<td>1</td>
<td>N-Propyl Acetate</td>
<td>C\textsubscript{3}H\textsubscript{6}O\textsubscript{2}</td>
<td>Probiotic fermentation</td>
</tr>
<tr>
<td>2</td>
<td>Neopentyl Glycol</td>
<td>C\textsubscript{5}H\textsubscript{12}O\textsubscript{2}</td>
<td>Anti Microbial</td>
<td></td>
<td>S j jiang 2013</td>
<td>2</td>
<td>Neopentyl Glycol</td>
<td>C\textsubscript{5}H\textsubscript{12}O\textsubscript{2}</td>
<td>Anti Microbial</td>
</tr>
<tr>
<td>3</td>
<td>Hentriacontane</td>
<td>C\textsubscript{36}H\textsubscript{64}</td>
<td>Anti Cancer Activity</td>
<td>Anti Inflammatory Activity Anti Oxidant Antimicrobial</td>
<td>Jeffery et al. 1983</td>
<td>3</td>
<td>Hexanoic Acid, 2-Methyl</td>
<td>C\textsubscript{5}H\textsubscript{12}O\textsubscript{2}</td>
<td>Anti Oxidant Anti Microbial</td>
</tr>
<tr>
<td>4</td>
<td>Phenol, 2,4-Bis(1,1-Dimethylthyl)</td>
<td>C\textsubscript{13}H\textsubscript{22}O</td>
<td>Anti Fungal</td>
<td>Anti Microbial Anti Oxidant</td>
<td></td>
<td>Rangel- Sánchez 2014</td>
<td>4</td>
<td>Pentanoic Acid, 4-Methyl-</td>
<td>C\textsubscript{5}H\textsubscript{12}O</td>
</tr>
<tr>
<td>5</td>
<td>Methoxyacetic Acid, 3-Pentadecyl</td>
<td>C\textsubscript{18}H\textsubscript{36}O</td>
<td>Anti Bacterial</td>
<td></td>
<td>Vaiythianathan et al 2015</td>
<td>5</td>
<td>Hexadecane</td>
<td>C\textsubscript{15}H\textsubscript{34}</td>
<td>Anti Alarial Anti Oxidant Anti Acrerial</td>
</tr>
<tr>
<td>6</td>
<td>Sulfurous Acid, Hexyl Tetradecyl</td>
<td>H\textsubscript{2}SO\textsubscript{3}</td>
<td>Anti-Diabetics Anthelmintic Antibacterial Antifungal</td>
<td></td>
<td>Vadhivel and Gopalakrishna 2011</td>
<td>6</td>
<td>Phenol, 2,4-Bis(1,1-Dimethylthyl)</td>
<td>C\textsubscript{13}H\textsubscript{20}</td>
<td>Anti Acrerial Anti Oxidant Anti Iabetic</td>
</tr>
<tr>
<td>7</td>
<td>Heptacosane</td>
<td>C\textsubscript{27}H\textsubscript{54}</td>
<td>Anti Oxidant</td>
<td>Anti Cancer Anti Microbial</td>
<td>Elshiek et al. 2015</td>
<td>7</td>
<td>Sulfurous Acid, 2-Propyl Tetrade</td>
<td>C\textsubscript{19}H\textsubscript{30}O\textsubscript{5}</td>
<td>Anti-Diabetics Anthelmintic Antibacterial Antifungal</td>
</tr>
<tr>
<td>8</td>
<td>Methyl 3-(1-Pyrrolo)Thiophene-2-</td>
<td>C\textsubscript{10}H\textsubscript{15}NO\textsubscript{5}S</td>
<td>Anti Oxidant</td>
<td>Anti Malarial Anti Tumour</td>
<td>Jarak et al. 2006</td>
<td>8</td>
<td>Heptadecane</td>
<td>C\textsubscript{17}H\textsubscript{36}</td>
<td>Antimicrobia</td>
</tr>
</tbody>
</table>

Nevertheless, it is evident that the secondary metabolites of PRV3 (KR067665) and PRV23 (KR708821) may include some potent chemotherapeutic substance notably antibiotics mediated by free radical scavenging effect, antioxidant effect and some potent anticancer principles that includes bioactive compounds. In order to identify their therapeutic potential we screened these metabolites for antimicrobial and anticancer effects in vitro. The results of the antimicrobial effect of the isolates against select human and fish pathogens show that majority of the isolates have inhibitory activity against human pathogens such as Escherichia coli, Klebsiella, Proteus mirabilis, Serratia marcescens, Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholae. However, the two lead strains PRV3 (KR067665) and PRV23 (KR708821) that are under investigation showed significant inhibitory activity against human pathogen Serratia marcescens (Fig 4).

This study helps to identify the environmental stress on fish by accessing the probiotic metabolic alteration as an effective investigative strategy. Adaptation and resilience of probiotic communities to anthropogenic stresses have increased the bioactive compounds production. Further, our study showed promising results to exploit the isolated strains not only as commercial probiotics as supplements and food in aquaculture but also as a biochemical machinery to synthesize novel therapeutic compounds such as antibiotics and cancer therapeutic agents. We
used Vero, MCF7 and HeLa cell line (normal, breast cancer and cervical cancer cell lines respectively) to study the in vitro anticancer effect of bioactive compounds were isolated from PRV3 and PRV23 MTT cytotoxicity assay using secondary metabolites of B. cereus (KR067665) showed no effect on normal cell line (Vero), indicating safer for normal cells, however, MCF7 cells were significantly inhibited in dose dependent manner. HeLa cells were inhibited.

Figure 4: The selected bacterial crude cell free extracts are using against antibacterial activity.

The HeLa cells are highly inhibited to the bioactive compounds various concentrations are used to inhibit the HeLa (18.75 to 300µg/ml) and MCF7 cell line (18.75 to 300µg/ml). HeLa cell lines were the highly inhibited to the probiotic crude cell free extracts. In order to identify the anticancer activity the bacterial cell free extract was used against Vero, MCF7 and Hela cell line (normal, breast cancer and cervical cancer cell lines). The cytotoxicity assay of bioactive compounds of PRV3 and PRV23 showed no harmful effects on normal cell line (Vero), thus indicating these compounds can be used for therapeutic purpose (Fig.5; S2). And the activity was analyzed by dose dependent manner. The IC50 value of PRV3 and PRV23 cell free extracts for MCF7 300 µg/ml and HeLa 200 µg/ml cells were respectively (Fig.5; S2). The cellular morphology of normal cells remain eloquent while the MCF7 300 µg/ml and HeLa 200 µg/ml cells showed reduced growth and disrupted cell wall indicating apoptotic like behavior for both PRV3 and PRV23 bioactive compounds. Thus the result of the present study reveals that the bacterial metabolites namely PRV3 and PRV23 act as potential compounds for biotherapeutic treatment.
Figure 5: Two bacterial sp (PRV3 and PRV23) crude cell free extracts are using to treat anticancer activity.normal cell line no harmful effects of bioactive compounds.5A is the HeLa cell line IC50 values are measured concentration level is (18.75µg/ml to 300 µg/ml).5B is indicate that MCF 7 cell line IC50 values are measured concentration level is (18.75µg/ml to 300 µg/ml).The bioactive compounds are best activity for HeLa cell line

CONCLUSION

The use of probiotics in enhancing the gut microflora of human, animals and in fishes shows signs of becoming a success which infers that the isolated strains can be used as probiotics both in human and fishes after proper certification. The probiotic bacteria followed by characterization test such as Acid tolerance, Bile salt tolerance, Auto aggregation, Antibiotic susceptibility and Antimicrobial tests. The bioactive compounds of isolated probiotic organisms were used as the relative scale to correlate the stress experienced by the fishes through their environmental habitat and food chain. Our study showed promising results to exploit the isolated strains not only as commercial probiotics as supplements and food in aquaculture, but also as a source biochemical substances to synthesize novel therapeutic compounds such as antibiotics and cancer therapeutic agents. For therapeutic purposes, our study lays a rudimentary foundation and further characterization of metabolites and extensive in vivo studies may yield interesting results.

Ethical approval

In this study we have conducted only in vitro analysis and not involving to in-vivo study. Hence we are not getting the ethical statement.

Acknowledgment: This study was funded by University Grants Commission (UGC); India supported the project under grant number UGC/41-166/2012.

REFERENCES

25. Suzuki M. 2005 Bile salt and acid tolerance of *Lactobacillus rhamnosus* strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol Lett. ;244(1), 129-37