A Review on Pharmacological Profile of Ethanamide and their Derivatives

Rahul Chauhan*, Pooja Saini, Richa Choudhary, Sonam Rani

1 MET Faculty of Pharmacy, Moradabad-244001 (U.P.), India.
2 Faculty of Pharmacy, IFTM University, Lodhipur Rajput- 244102, Moradabad, India.
3 MIT College of Pharmacy, Moradabad-244001, India.
4 Shri Satya Institute of Pharmacy, Lodhipur Rajput, Moradabad, U.P. 244102, India.

*Corresponding author’s E-mail: DrxRahulchauhan623@gmail.com

ABSTRACT

Acetamide is a natural aggregate, this is the sensible amide get from acidic corrosive. The associated compound N, N-dimethylacetamide is extra commonly utilized, yet this isn’t make ready from acetamide the Lewis corrosive belongings before acetamides whichever is worn as systematic substance yet in addition utilized in the of a blend. Acetamide was first made in the year 1986 by the principal created in France and has been accessible in Europe since 1986. The America considering, the helpful of African dosing ailment. Modafinil acknowledged beginning inside 1998. However, as a medication Acetamide is an oral and the equivalent can be in intravenous from sedate organization can be a suppository in butt-centric course or an inward breath course. Which is utilized in explicit cases. As 10-subbed subordinates. Through with so much regarded too have dissolving operator like natural mixes inflammable emollients with hygroscopic specialist. The most noticeable utilization of these subordinates is as luxurious Sess pain relieving action. Since it has defused a Paracetamol, the world’s most generally Used medications which is one of the is a case of pain relieving operators. It is additionally answered to have at acetamide is liable for antimicrobial cancer prevention agent calming exercises. Practical gathering able. The natural assessment of the CNS operator action has been performed. Out of the biologic thought, it is built up such know about all the makes three combination seem dynamic focal sensory system delegate movement. The writing demonstrates that Acetamide show impacts like antimicrobial exercises, cancer prevention agent exercises, and calming exercises. CNS operator, and so forth. From result discussion exclusively, such the substitution at fragrant phenol have commended extent to yield likewise esteem. The warm cycloaddition or N alkylolation vilsmeier Haack response steps included by buildup followed. This article gives different strategies to get ready more subordinates of Acetamide to investigate more exercises of acetamide.

Keywords: Acetamide, Organic compound, CNS Agent.

INTRODUCTION

Mixes with an acetamide linkage show assortment of utilization Lewis corrosive property of acetamides makes their utilization as investigative reagents and in the planning by an imprint by edifices. At that point ethanamide bunch is manageable in antimicrobial ascorbic corrosive additionally COX-inhibitor (NSAID) activity. The usages of acetamides and analogs are along these lines using like adversary of malady agents extensively considered. The bioactive auxiliaries of acetamides are commonly obtained from regular things and moreover by fabricated procedures. The different substance and natural properties of these mixes are discovered significance in industry and furthermore in pharmaceutical arrangements. Maybe these are the explanations behind a developing enthusiasm for the investigation of the union, natural properties and structure movement connections of acetamides. These ties on the acetamides have made the current exploration which is including the amalgamation, portrayal and organic assessment of some new acetamides and active investigation of two acetamides, lidocaine and o-acetamidophenol. Acetamide buildup is found in numerous proteins and mammalian discharges like N-acetylaspartyl glutamic corrosive and furthermore by manufactured techniques. Acetamide buildup is found in numerous proteins and mammalian emissions like N-acetylaspartyglutamic corrosive. The bioactive subsidiaries of acetamides are normally acquired from regular items and furthermore by manufactured strategies. Acetamide subsidiaries are the examination extent of lifted up percent likewise have a long history. These mixes are artificially flexible atoms with a responsive carbonyl gathering. The level of
reactivity of its carbonyl gathering towards nucleophilic reagents and this property has been broadly utilized in the writing, among the orchestrates by additionally an all the way open decent variety of heterocyclic mixes of restorative intrigue. They have extensive criticalness in their organic exercises and for their reactivity towards nucleophiles, which make free the combining of a likewise enormous expansion of heterocycles. Acetamide has atomic equation C₂H₅NO.

Figure 1: Acetamide

The acetamide subordinates and their analogs have an enormous variety of restorative properties including antiproliferative, mitigating, pain relieving, anticonvulsant, cell reinforcement, against angiogenic, anticancer, antifungal (phenyl-1-napthyl-phenyl acetamide and antibacterial and so on. A study on this writing on acetamide uncovers that these are intriguing focuses with regards to the union since such structures have potential for advancement of mixes for root development inhibitor, Developing new radiopharmaceuticals for symptomatic methods and treatment particularly on atomic medicament use radio-controlled tracers if toss gamma pillar from to inside body. Acetamide subordinates additionally discovered application in strong state science in the uni on of amino acids, normal mixes (alkaloids) and their homologs pharmacologically encouraging substances and biomarkers reagents for polymer change particle trade pitches for weighty and radioactive metal sorption. Chloroacetamide pesticides and colors are likewise notable. In this way, examination of acetamide science is a real assignment, both from hypothetical and applied perspectives²⁻¹⁰.

The pharmacophore in existing medication particles once in a while applies a significant effect on the natural profile of the atoms. It has been seen that consolidation of certain bioactive. In light of these perceptions, it was foreseen that chlorooacetylation of sulfonamide moiety and buildup with various subsidiaries of aniline and phenol could deliver intriguing arrangement of mixes which likely natural exercises¹¹⁻¹⁹.

As through writing study, it was discovered that acetamides bunches containing mixes show powerful skeletal muscle relaxant movement. So, we have likewise completed her skeletal muscle relaxant by the blended mixes by rota rod and actophotometer technique.

Pharmacological Profile of Acetamide

Ahmed et al. (2018) done the structure, blend, atomic docking of new lipophilic acetamide subsidiaries. The mixes were assessed for possible anticancer and antimicrobial action, managing likely anticancer and antimicrobial operator against Gram-positive and Gram-negative strains²⁰.

Figure 2.1

<table>
<thead>
<tr>
<th>Compound code</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>COCH₃</td>
</tr>
<tr>
<td>3</td>
<td>2-pyridinyl</td>
</tr>
<tr>
<td>4</td>
<td>2-Thiazoly</td>
</tr>
<tr>
<td>5</td>
<td>C={(NH)}NH₂</td>
</tr>
<tr>
<td>6</td>
<td>5-(3,4dimethyl) oxazolyl</td>
</tr>
</tbody>
</table>

Turan-Zitouni et al. (2018) carried out the synthesis of new thiazoline-tetralin Derivatives. The anticancer potency was evaluated on human breast adenocarcinoma cell line (MCF-7), human lung carcinoma cell line (A549) and mouse embryoblast cell line (NIH/3T3) using the MTT method, DNA synthesis inhibition and flow cytometric analysis²¹.

Figure 2.2

<table>
<thead>
<tr>
<th>Compound code</th>
<th>R₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ClCH₂CO₂H₂O</td>
</tr>
<tr>
<td>2</td>
<td>NH₂NH₂·H₂O</td>
</tr>
<tr>
<td>3</td>
<td>C₆H₅NCS/C₆H₅NCS</td>
</tr>
<tr>
<td>4</td>
<td>Phenacyl bromide derivative</td>
</tr>
</tbody>
</table>

Janakiramudu et al. (2018) carried out a synthesis of sulfonamides and carbamates of 3-Fluoro-4-morpholino aniline (linezolid intermediate). The compounds were screened for the antimicrobial activity and molecular docking study²².

Figure 2.3
Khalid et al. (2018) carried out the Synthesis of 1, 2, 4 triazole hydration and sulfonamide novel derivatives. The compounds were screened for molecular docking evaluation of antiplatelet and anticoagulant actions\(^23\).

Lin G et al. (2018) carried out the synthesis of N-(4-(N, ' -substituted sulfamoyl) phenyl) myrtenamides containing a heterocycle. The compounds were exhibited antifungal activity against Physalospora piricola and Alternaria solani\(^24\).

Alasmary et al. (2018) carried out the synthesis of novel acetamide derivatives. The compounds were synthesized, and evaluated for their anti-ulcerogenic & Anti-Ulcerative colitis activities and showed curative activity against acetic acid induced ulcer model in a dose of 50 mg/kg\(^25\).

Charaya et al. (2018) carried out the design and synthesis of novel thiazol-2-yl benzamide derivatives. A series of sial-2-yl benzamide derivatives were synthesized from benzoic acid and evaluated by in vitro enzymatic assay for GK activation. In silico docking studies were carried out to determine the binding interactions for the best fit conformations in the allosteric site of GK enzyme\(^26\).

Rutkauskas et al. (2017) carried out the synthesis of benzene sulfonamides bearing pyrrolidinone moiety. The compounds were evaluated for as inhibitors of carbonic anhydrase IX\(^27\).

Bhuva et al. (2017) carried out the synthesis of pyrimidinyl sulfonamide derivatives. A small library of compounds is synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37RV\(^28,29\).

Hamas et al. (2017) carried out the synthesis of some new acetamide derivatives and 5-Benzylidene-2-(2,6-dimethyl-phenylimino) -thiazolidin-4-ones. The newly synthesized compounds were screened for their antimicrobial activities against two identifiable strains using cup, plate method, and most of the synthesized derivatives revealed discernible antibacterial activity\(^30,31\).
Maladies et al. (2017) Synthesis of 2,4-DI substituted furan derivatives. The synthesized compound screening for the antibacterial activity studied against Gram (+) and Gram (−) bacteria like antibacterial activity against Escherichia coli and Proteus vulgaris.

Eswararao et al. (2017) carried out the synthesis of 2-phenylindolizine acetamide derivatives. The compounds were screened for their antimicrobial activities of novel class of 2-phenylindolizin acetamide scaffolds are described by variation in the therapeutic effects of a parent molecule three medically relevant organisms like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.

Nafeesa et al. (2017) carried out the synthesis of 1, 3, 4-oxadiazole and acetamide derivatives of ethyl nipecotate. The synthesized compounds were evaluated for their antibacterial and anti-enzymatic potential supported by % hemolytic activity. The antibacterial screening against certain bacterial strains of gram negative and gram-positive bacteria rendered compound as a good inhibitor of gram-negative bacterial strains.

Bach et al. (2017) carried out the synthesis of novel N-phenylacetamide bearing 1, 2, 4-triazole derivatives. The antimicrobial activities of the derivatives were measured against both bacteria and fungi.

<table>
<thead>
<tr>
<th>Compound code</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_{21}H_{25}N_{10}O</td>
</tr>
<tr>
<td>2</td>
<td>C_{27}H_{30}N_{2}O_{4}</td>
</tr>
<tr>
<td>3</td>
<td>C_{24}H_{20}N_{2}O_{4}</td>
</tr>
<tr>
<td>4</td>
<td>C_{21}H_{17}N_{3}O_{2}</td>
</tr>
<tr>
<td>5</td>
<td>C_{21}H_{17}N_{2}O_{2}</td>
</tr>
<tr>
<td>6</td>
<td>C_{22}H_{19}N_{4}O</td>
</tr>
<tr>
<td>7</td>
<td>C_{23}H_{18}N_{2}O_{4}S</td>
</tr>
<tr>
<td>8</td>
<td>C_{23}H_{18}N_{2}O_{5}</td>
</tr>
<tr>
<td>9</td>
<td>C_{23}H_{18}N_{2}O_{4}</td>
</tr>
<tr>
<td>10</td>
<td>C_{23}H_{18}N_{2}O_{3}</td>
</tr>
<tr>
<td>11</td>
<td>C_{21}H_{15}N_{2}O_{2}</td>
</tr>
</tbody>
</table>
Verma et al. (2017) carried out the synthesis of a series of new N-(2-benzoyl-4-chlorophenyl)-2-(4-(substituted phenyl)piperazin-1-yl)acetamides. The compounds were screened for the anxiolytic and skeletal muscle relaxant activity in which computational studies with molecular docking revealed that the target compounds correctly dock into the binding pocket of the GABAA receptor.

Basra et al. (2016) carried out the synthesis of novel sulfonamides under mild conditions. The synthesized compounds were screened for effective inhibitory activity against the carbonic anhydrase isozymes I and II and the inhibition effects of on the hydrates and esterase activities of human carbonic anhydrase isoenzymes.

Kumar et al. (2017) carried out a series of Schiff bases of diphenylamine derivatives. The synthesized compounds were evaluated for the in-vitro for their antibacterial activity against pathogenic both Gram-positive bacteria B. subtilis and Gram-negative bacteria E. Coli, uses ciprofloxacin as standard drug.

Kumar et al. (2016) carried out a synthesis and computational studies of 2-[4-(aryl substituted)piperazine-1-yl]-N-benzylacetamides. The compounds were evaluated for potential antipsychotic activity by studying apomorphine induced climbing behavior, 5-HTP induced head twitches behavior and catalepsy in mice.

Cheng et al. (2016) carried out the discovery of Pyridinyl Acetamide Derivatives. Developed and performed a cellular high-throughput screen for inhibitors of Wnt secretion and pathway activation. A lead structure (GNF-1331) was identified from the screen. Further studies identified the molecular target of GNF-1331 as Porcupine, a membrane bound O-acyl transferase.

Singh et al. (2015) carried out the synthesis of 2-amino-5-chlorobenzophenone derivatives. All the synthesized compounds were subjected to physicochemical parameters determination for BBB penetration through online software. The experimentally determined and calculated values of logP are very much similar to values of logP calculated by the online software chemillico and are in the range required for good CNS activity. The compounds were screened for the skeletal muscle relaxant activity and from the investigation.
Rani et al. (2015) carried out the synthesis of substituted phenoxy acetamide derivatives. The compounds assessed for their anti-inflammatory activity by a carrageenan induced rat paw edema method, analgesic activity by Eddy’s hot plate method and antipyretic activity of brewer’s yeast induced pyrexia method.

Ugwu et al. (2014) carried out the synthesis of [4-Methylphenylsulphonamido] -N-(Pyridin-2 Yl) acetamide derivatives. The compounds were screened for antifungal activities against Candida albican and Aspergillus Niger. The results revealed that the compounds had better antifungal activity than fluconazole the reference drug.

Saudi et al. (2014) carried out the synthesis some novel sulfonamide and amide derivatives containing coumarin moieties. The compounds were screened for their antimicrobial and antioxidant activities. Their antimicrobial activity was assigned using the conventional agar dilution method and the antioxidant activity was assessed using two methods, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method and ferric reducing antioxidant power (FRAP) assay.

Rathore et al. (2014) carried out the synthesis of some new pyrazoline substituted benzene sulfonylureas. The synthesized compound were screened for their antiproliferative activity towards 60 human cancer cell lines by the National Cancer Institute (USA).

Pedgaonkar et al. (2014) carried out the development of 2-(4-oxoquinazolin-3 (4H) Yl) acetamide derivatives. The derivatives were synthesized and evaluated for their in vitro MTB InhA inhibition. Compounds were further evaluated for their in vitro activity against drug sensitive and resistant MTB strains and cytotoxicity against the RAW 264.7 cell line.

Koch et al. (2012) carried out the synthesis, of novel 1-acetyl-3, 5-diaryl-4, 5-dihydro (1H) pyrazole derivatives bearing urea, thiourea and sulfonamide moieties. The compound have been screened for their pro-inflammatory cytokines (TNF-a and IL-6) and antimicrobial activity (antibacterial and antifungal).
REFERENCES


DOI: 10.1016/s0968-0896(00)00265-0 PMID: 11249137


doi.org/10.1016/j.bmc.2004.10.010


DOI.org/10.1021/jo982070j


DOI: 10.1021/ol9004799 PMID: 19382776


Doi.org/10.1016/S0143-7208 (01)00065-1


DOI: 10.1016/j.bmc.2004.04.044 PMID: 15186828


DOI: 10.1021/ol016424v.


DOI: 10.1007/s40242-017-6327-3


DOI: 10.1007/s40242-017-6327-3


DOI: 10.1016/j.bibas.2017.08.001


