Review of Antibiotic Therapy Recommended for Sepsis Patients

Sarita Jangra Bhyan1*, Dr. Ajay kumar2, Abhishek Jain3, Divyanshi Rastogi3, Gourav Jain3, Raju singh3
1. Assistant Professor, Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, TMU, Moradabad, UP, India.
2. Professor, Department of General Medicine, Teerthanker Mahaveer Medical College & Research Centre, TMU, Moradabad, UP, India.
3. Pharm D 5th Year, Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, TMU, Moradabad, UP, India.

*Corresponding author’s E-mail: sarita28787@gmail.com

Received: 03-09-2020; Revised: 21-11-2020; Accepted: 28-11-2020, Published on: 15-12-2020.

ABSTRACT

Sepsis is the life-threatening bloodstream infection caused by bacteria. With the use of antibiotics the mortality rate decreases. The objective of this review is to enhance the performance of the healthcare professionals. To preserve the antibiotic agents for future patients through appropriate antibiotic therapy. Broad spectrum antibiotics are active against all the microorganisms. The chances of mortality rate decrease with appropriate use of antibiotics. Antibiotic should be administered within the first hour after recognition of sepsis and septic shock. Studies have shown that any delay in initiation of therapy increases the risk of mortality. The drug must be given after considering patients factor, pathogen, resistance pattern, suspected source of infection.

Keywords: Bloodstream infection, sepsis, empiric antibiotic, gram positive, gram negative bacteria.

DESCRIPTION OF THE CONDITION

Sepsis is a life threatening bloodstream infection caused by bacteria. Sepsis is defined as an acute organ dysfunction caused by a dysregulated host response to infection, with two or more suspected infection of: Hypotension (systolic pressure <100 mm Hg), Altered mental status (score < 14), Tachypnea (respiratory rate > 22 breaths / min).3

Septic shock is defined as, sepsis induced with hypotension (>65mmHg) or serum lactate level exceeding 2mmol /L after adequate fluid resuscitation.

Every year there are around 3.15 million of cases of sepsis worldwide.2 Sepsis is analysed by two criterias qSOFA and MODS.

quick Sequential Organ Failure assessment allows bedside analysis of patients, which includes systolic blood pressure of 100mmHg and respiratory rate of 22breaths /min .

Multiple Organ Dysfunction Failure shows the end stage condition of patients with organ dysfunction.

INTRODUCTION

Infectious microorganisms invade in humans and damage human tissues by their own or by their toxins. Antibiotics are used to treat these infections. Antibiotics has two effects, bactericidal effect or bacteriostatic effect. Bactericidal antibiotics work by inhibiting the growth of microorganism whereas bacteriostatic antibiotics work by killing microorganism. Antibiotics targets nucleic acids synthesis, biological metabolic compound synthesis, protein synthesis, cell wall and cell membrane.

Principles of Antibiotics

- Prophylactic

 The prophylactic measure is used to prevent the chances of an infection.

- Preemptive

 The pre-emptive measure is used to abort the infection.

- Empiric

 The empiric measure is used in the absence of knowledge of its etiology to control the infection.

- Definitive

 The definitive measure is used when the etiology is known, to cure the infection.

Classification of Antibiotics

- Penicillins
- Cephalosporins
- Vancomycin
- Aminoglycoside
- Tetracyclines
- Macrolides
- Linezolid
- Fluoroquinolones
Impact of inappropriate use of Antibiotics

1. Poor Patient outcome i.e. antibiotic resistance, organ toxicity, increased mortality, adverse drug reactions, superinfections.
2. Excess costs i.e. prolonged hospital stays, drug acquisition costs.

The treatment of sepsis, septic shock requires an appropriate diagnosis measure, ventilator support and an accurate antibiotic therapy.

Antibiotic therapy is very successful against the bacterial infections, as they inhibit the growth or kill the microorganism. Antibiotic therapy is the life saving therapy for patients with sepsis and septic shock.

Antibiotics are the most commonly prescribed drugs in today’s era. Almost 30% of in-patients receive antibiotic therapy.

Administration of an empiric antibiotic therapy within the first few hours of sepsis recognition is recommended by current guidelines. These guidelines suggest early administration of antibiotic therapy should be broad spectrum antibiotics, because inappropriate use of antibiotics increase the chances of mortality of ill patients.

General Principles for antibiotic therapy

Right Time:
Antibiotic must be initiated within the first hour after recognition of sepsis, as it increases the chances of survival of the patient. The chances of progression of severe sepsis to septic shock will be decreased.

Right antibiotic:
Right antibiotic therapy is important because inappropriate therapy increases the risk of resistance, failure of treatment. Antibiotic therapy is selected on the basis of organism(s) infecting and considering patient’s factors.

Individual patient factors helps in identifying the risk progression of death and improvement. Individual patient may have other co morbidities (renal disease, liver disease, etc) also which may affect drugs pharmacokinetics and pharmacodynamics parameters.

Infected bacteria are of different types i.e. gram positive, gram negative, pseudomonas, etc. Patient could be affected either by gram positive, gram negative or pseudomonas.

Any patient full filling the criteria of sepsis and septic shock are treated with the broad spectrum antibiotic therapy.

Selected drugs must have adequate: pharmacokinetic and pharmacodynamic properties, have adequate tissue penetration activity at the suspected source of infection. However, some patients are resist with the drugs, their antibiotic regimen is selected on the basis of known resistant pathogens community.

Multiple drug therapy and combination drug therapy:
Combination drug therapy increases the chances of initial therapy, as it covers larger area of infection. The therapy is suggested for the patients with septic shock.

Whereas multiple drug therapy includes multi drugs with different mechanisms, multiple drugs have high probability of killing the growth of the pathogen or inhibiting the growth of the pathogen.

Table 1: Chosen Antibiotics and their Coverage.

<table>
<thead>
<tr>
<th>Antibiotic class</th>
<th>Distribution volume</th>
<th>Plasma T/2</th>
<th>Vd increases with fluid changes?</th>
<th>TDM required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriazone</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pharmacodynamics of Different Antibiotics (Hydrophilic and Lipophilic)

<table>
<thead>
<tr>
<th>Antibiotic class</th>
<th>Distribution volume</th>
<th>Plasma T/2</th>
<th>Vd increases with fluid changes?</th>
<th>Protein binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>0.2 – 0.3</td>
<td>2-3</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>0.5 – 0.6</td>
<td>3.5 – 7</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>Variable</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Livofloxacin</td>
<td>0.92 – 1.36</td>
<td>6 – 8.9</td>
<td>500-700mg</td>
<td>24 – 38%</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1.2 – 2.7</td>
<td>2(4-5 h in elders)</td>
<td>400mg IV 8h</td>
<td>20-40%</td>
</tr>
</tbody>
</table>
Right Dose:

Right dose means, dosage of antibiotics with accurate pharmacokinetic and pharmacodynamic properties. Broad spectrum antibiotics are effective against almost all the pathogens, so the presence of antibiotics at the site of infection should be sufficient for effective response. Therapeutic drug monitoring of antibiotics are necessary as it ensures its efficacy. Not every antibiotic have same PK and PD characteristics. There are lipid soluble antibiotics and water soluble antibiotics (Pharmacokinetics). As well as there are antibiotics which are either dose dependent or time dependent(pharmacodynamics).

In case of severe infection, concentration of antibiotic is affected by- Organ dysfunction, hypoproteinemia, tissue hypoperfusion.25

Right Administration:

Oral and Parenteral

Usually parental administration is suggested for severe sepsis. Intravenous route of administration is very convenient for unconscious patients as they are infused directly into the blood stream and are readily absorbed by the tissues, IV route is also safer for the patients who cannot take therapy orally.

Advantage: Review of the treatment can be done on the regular basis.

In the past, the bioavailability of the oral antibiotic drugs was poor. Now-a-days, various oral agents with proper penetration activity are available. Various studies have shown that these oral agents are as effective as those parental agents.

Advantage: The length of hospital stay is shorter and is cost effective26

Duration of therapy:

Duration of antibiotic drug therapy varies with patients response to the treatment, severity of illness and site of infection.

SSC guidelines recommended a standard therapy of 7-10 days. Patients with rapid resolution of symptoms should be given therapy for shorter duration5, 25, 26

Chances of resistance increases with longer duration of antibiotic therapy.

DISCUSSION

After studying various articles it has been observed that, antibiotic treatment should be initiated as soon as possible for both sepsis and septic shock as the development of sepsis to septic shock increases every hour. (Surviving Sepsis Campaign). The antibiotics are selected after considering patients factors, suspected pathogens. The drugs which covers both gram positive bacteria and gram negative bacteria should be given at the initiation of the therapy.

CONCLUSION

Broad spectrum antibiotic therapy is important as it covers all the pathogenic organisms and must be administered within the first hour after recognition of sepsis and septic shock. Studies have shown that any delay in the initiation of therapy increases the risk of mortality. The drug must be given after considering patient factors, suspected pathogen, resistance pattern, suspected source of infection.

REFERENCES

12. Kuti EL, Patel AA, Coleman CI, Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: A

Source of Support: None declared.

Conflict of Interest: None declared.