Evaluation of Analgesic Effect of Apigenin in Rodent

Arka Mondal, Harihar Dikshit, Lalit Mohan, Dr.Hitesh Mishra*, Manish Kumar, Margoo Ahmad, Manoj Kumar
Department of Pharmacology, Indira Gandhi Institute of Medical Science, Sheikhpura, Patna-800014, India.
*Corresponding author’s E-mail: arkam741@gmail.com

Received: 14-10-2021; Revised: 21-12-2021; Accepted: 29-12-2021; Published on: 15-01-2022.

ABSTRACT
In Chronic inflammatory and painful diseases, such as Osteoarthritis, Rheumatoid arthritis, Low back pain, Fibromyalgia drugs that are currently used for the treatment of pain are opioids and for inflammatory conditions are non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. All these drugs produce potential toxic effects. Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid. Current study envisaged analgesic properties of apigenin in animal models. Three dose, 10mg/kg, 20mg/kg and 40mg/kg of apigenin were used in this study. Analgesic activity was studied in rat and mice by radiant tail-flick and Eddy’s hot plate models respectively. In both models the standard drug used was Tramadol-25mg/kg. The optimal analgesic effect of apigenin can be seen at dose 20mg/Kg in tail-flick(P<0.05) and Eddy’s Hot plate model (P<0.05) in comparison to control and standard drug respectively. In conclusion Apigenin processes analgesic activities.

Keywords: Apigenin, NSAID’s, Analgesic activity, Flavonoids.

INTRODUCTION
Analgesia or pain is an unpleasant bodily sensation perceived as suffering, usually evoked by an external or internal noxious stimulus. Failure to relieve pain is morally and ethically unacceptable. Drugs that are currently used for the treatment of pain are opioids and for inflammatory conditions are non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. All these drugs produce potential toxic effects. Different study suggests that risk of gastrointestinal bleeding, allergic reactions, renal failure was significantly associated with use of non-steroidal anti-inflammatory drugs (NSAIDs) like regular-dose aspirin, diclofenac, ketorolac, naproxen or Nimesulide. NSAIDs with longer half-lives are more likely to cause nephrotoxicity because of sustained prostaglandin inhibition leading to a sustained reduction in renal blood flow. Ibuprofen-associated with acute, reversible renal failure with hyperkalemia, tubular necrosis, and proteinuria developed in a patient who had no predisposing underlying disease.

It is not unexpected that from drug discovery to market most compounds face an uplift battle to become an approved drug. Drug research and development (R & D) is comprehensive, expensive, time-consuming process with full of risk. It is far estimated that a drug from concept to market would take approximately 10 to 12 years with huge capitalizing out-of-pocket costs.

On the contrary many medicines of plant origin had been used since ages with minimal adverse effects profile than traditional analgesic drugs. It is therefore essential to introduce new plant metabolites like flavonoids to develop more effective and cheaper drugs. Flavonoids are an important class of natural products; especially, they belong to a class of plant secondary metabolites having a polyphenolic structure, widely found in fruits, vegetables and certain beverages. Flavonoids had long been recognized as potential anti-inflammatory, antioxidant, antiviral, antimicrobial, and anti allergic molecules. Flavonoids provide an important nutraceutical component to our diet and apigenin is one of them.

In the present Study Apigenin was selected as plant flavonoids because of diverse action of the molecule. occurring glycosides Apigenin (4,5,7-trihydroxyflavone) is one of the most widespread flavonoids in plants and formally belongs to the flavone sub-class that is the aglycone of several naturally. It is a yellow crystalline solid that had been used to dye wool. It was widely used in the treatment of various neoplastic disease includes ovarian cancer, breast cancer, colorectal cancer & various inflammatory and lipid disorders like multiple sclerosis, Amnesia and Alzheimer’s Disease.

Up to date no pre-clinical pharmacological study has been systematically conducted in animal models to evaluate the analgesic action of apigenin supporting traditional uses of this nutraceutical as dietary supplementation.
MATERIALS AND METHODS

Description of plant flavonoid: - Apigenin was procured from Sigma pharmaceuticals Pvt.ltd. as a powder.

Selection of animals, caring and handling: - A total of 30 healthy Wistar albino rats (90–150 g), of either sex and 30 healthy Swiss albino mice weighing 25–30 gm of either sex obtained from the Central Animal House IGIMS, Patna India were used in the experiments. Male & female Animals were separated in different cages. Animals were housed in polypropylene cage containing sterile paddy husk (procured locally) not more than 6 animals per cage under standard conditions of temperature (23±3°C), humidity and 12 hours natural light and 12hours Natural dark cycle. Animals were acclimatized for 7 days to the laboratory conditions before experiment. Animals were given standard dry pellet diet and tap water ad libitum. One day before the experiment animals were deprived of food as this is known to enhance their motivation to perform the test. For easy identification of animals in every group tail had been colored. The study was undertaken after obtaining approval of Institutional Animal Ethics Committee (IAEC approval Letter No. 125/2018/Pharma/IAEC/IGIMS dated 14/12/2018).

Study design: -The rats were randomly allocated into five groups of six rats for one model for testing analgesic activity. Mice were also divided into five groups of six mice each for the one experimental animal model of analgesia.

Grouping of Animals for Analgesic Study:-

Group I (control) received Normal Saline 2 ml of each rat (tail flick model) & mice (Hot plate model) perorally through intragastric tube.

Group II received standard drug Tramadol 25mg/kg intraperitoneally according to different body weight.

Group III received apigenin 10mg/kg per orally

Group IV received apigenin 20mg/kg per orally

Group V received apigenin 40mg/kg per orally

MATERIALS

Drugs: Tramadol, Normal saline, Ether (Sigma chemical Co. St Louis, USA, Apigenin

Determination of the drug dosage and dosing schedule: Doses were selected and determined according to the previous acute toxicity studies16. Three different doses were selected 10 mg/kg, 20 mg/kg and 40 mg/kg for analgesic activities. Before staring the experiment preparation of stock solution of apigenin was done by dissolving the apigenin powder in normal saline and administered according to animal body weight of each model.

METHODS

Analgesic study

Radiant heat tail-flick method: - The central analgesic activity was determined by radiant heat tail-flick model in rats17. The tail is the most important thermoregulatory organ of the rat. The heat dissipation is regulated by an on-off regulation of blood flow in the tail. The analgesic activity of the apigenin was studied by measuring drug-induced changes in the sensitivity of the pre-screened rats (the intensity of the light beam was experimentally defined such that animals withdraw their tails within 2 to 4 s) to heat stress applied to their tails by using analgesiometer. Tail-flick latency was assessed by the analgesiometer. All drugs were given in respective group in a respective route. The strength of the current passing through the naked nichrome wire was kept constant at 5 amperes. The distance between heat source and the tail kept 1.5 cm and the application site of the heat on the tail was maintained within 2 cm, measured from the root of the tail. Cut-off reaction time was +10 s to avoid any tissue injury during the process.

Evaluation: - The time taken by rats to withdraw (flick) the tail was taken as the reaction time. The animals were subjected to the same test procedure at +0 min without administering any drug considered as basal followed by +30, +60, +120, and +180 min after the administration of test/standard/ control drug.

Eddy’s Hot plate method: - The analgesic activity of the Apigenin, was measured by hot-plate method. The hot plate test involves higher brain function, and is considered to be a supraspinally organized response. The paws of mice are sensitive to heat at temperature which are not damaging to skin. The responses are jumping, withdrawal of the paws and licking of the paws. The mice were placed on a hot plate maintained at 55±0.5°C. Basal reaction time was taken when mice start licking their paw or started jumping, which was appearing first. The normal reaction time was around 7-9 sec. Hotplate latency was assessed by the analgesiometer. All drugs were given in respective group in a respective route.

Evaluation: - The reaction time was recorded without administering any drug considered as basal followed by +30 min, +60min, +120min, +180min after the drug administration. The cut-off time was considered as 15 seconds in order to avoid burning of the animals. The mean reaction time for each treated group was determined and compared with that obtained for each group before treatment. Percentage increase in reaction time (I %), was derived, using the formula

\[I\% = \left(\frac{I_t - I_o}{I_o} \right) \times 100, \]

Where \(I_t \) = reaction time at time t, and \(I_o \) = reaction time at time zero (0 h)18.

Statistical analysis: - The results were analysed for mean±SEM, SD statistical significance using One way
ANOVA, followed by Scheffe’s test. A P-value <0.05 was considered significant.

RESULTS

Analgesic activity in rats by Radiant heat tail-flick method

Latency period at different time interval significantly different (p<0.01 & p<0.001) compared to baseline values within the same drug treated group. Tramadol and Apigenin all dose caused significant dose dependent increase (P<0.05) in the percentage reaction time throughout the experiment. Although 20mg/kg body weight showing maximal inhibition of pain response at 120 minutes. Table 1 shows the Analgesic effect using radiant tail-flick method in Wister albino rat. The percentage increase in reaction time was dose dependent. At all the specific time intervals the percentage of tail flick elongation time differed significantly between the different dose of apigenin and Tramadol. At the peak of activity Apigenin-20mg/kg showed 74.79% (P<0.001), Percentage of tail-flick elongation time while Tramadol gave 11.05% (P<0.05) percentage of tail-flick elongation time (Table-1).

Analgesic activity in mice by Eddy’s Hot plate method

In Hot plate method both the Apigenin and standard drug Tramadol caused significant increase (P<0.05) in reaction time. The increase in latency period in different time intervals significantly differed compared to baseline value within the same drug treated group. The percentage increase in the reaction time was dose dependent and differed significantly among the groups of mice (P<0.001) receiving different dose levels of the apigenin and Tramadol. The percentage increase in the reaction time caused by the apigenin-20mg, apigenin-40mg and tramadol was detectable and peaked, at +2 hr. and +3hr. The percentage increase in the reaction time for apigenin-10mg was peaked at +2hr. but thereafter declined at +3hr.

Table 1: Effect of apigenin on radiant heat tail flick model in rat

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose/route</th>
<th>Basal (±SEM)</th>
<th>30min % Elongation (±SEM)</th>
<th>60min % Elongation (±SEM)</th>
<th>120min % Elongation (±SEM)</th>
<th>180min % Elongation (±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal saline (control)</td>
<td>2ml P.O.</td>
<td>3.8 ± 0.6 (1.602)</td>
<td>3.8 ± 0.3 (0.752),0%</td>
<td>3.8 ± 0.3 (0.752),1.73%</td>
<td>4.1 ± 0.6 (1.471),7.89%</td>
<td>4.6 ± 0.7 (1.861),21%</td>
</tr>
<tr>
<td>Tramadol (Standard)</td>
<td>25mg/kg I.P.</td>
<td>19 ± 1.5 (2)</td>
<td>19 ± 1.5* (3.687),0%</td>
<td>19.33 ± 1.1** (2.732),1.73%</td>
<td>21.1 ± 0.7* (1.940),11.05%</td>
<td>20.8 ± 0.6 (1.471),9.47%</td>
</tr>
<tr>
<td>Apigenin-10mg</td>
<td>10mg/kg P.O.</td>
<td>10.3 ± 1.9 (4.718)</td>
<td>10.6 ± 1.2* (2.943),2.9%</td>
<td>11.3 ± 0.8** (2.065),9.70%</td>
<td>14.1 ± 1.6 (3.970),36.89%</td>
<td>13.1 ± 0.76 (1.834),27.18%</td>
</tr>
<tr>
<td>Apigenin-20mg</td>
<td>20mg/kg P.O.</td>
<td>12.3 ± 1.1 (2.875)</td>
<td>18.6 ± 0.9*(2.338),51.21%</td>
<td>19.1 ± 1.0 (2.639),52.28%</td>
<td>21.5 ± 0.6 (2.516),74.79%</td>
<td>21 ± 1.5 (2.828),70.73%</td>
</tr>
<tr>
<td>Apigenin-40mg</td>
<td>40mg/kg P.O.</td>
<td>13.5 ± 1.4 (3.449)</td>
<td>16.8 ± 0.7 (0.705),24.4%</td>
<td>18.6 ± 0.6 (0.617),37.7%</td>
<td>19.5 ± 0.7 (0.766),44.4%</td>
<td>20.3 ± 0.6 (0.617),50.37%</td>
</tr>
</tbody>
</table>

*P<0.001 Control value vs respective drug group. ** P<0.001 standard vs Ap-10 (n=6), One-way ANOVA; SEM = Standard error of mean, SD=Standard deviation

Table 2: Effect of apigenin on Eddy’s Hot plate model in Mice

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose/route</th>
<th>Basal (±SEM)</th>
<th>30min % Elongation (±SEM)</th>
<th>60min % Elongation (±SEM)</th>
<th>120min % Elongation (±SEM)</th>
<th>180min % Elongation (±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal saline (control)</td>
<td>2ml P.O.</td>
<td>4.3±0.34 (0.816)</td>
<td>4.6±0.21 (0.516),7.62%</td>
<td>4.8±0.31 (0.752),11.54%</td>
<td>5.3±0.34 (0.816),23.25%</td>
<td>5.0±0.5 (1.264),16.27%</td>
</tr>
<tr>
<td>Tramadol (Standard)</td>
<td>25mg/kg I.P.</td>
<td>5.1±0.93 (0.983)</td>
<td>7.5±0.4* (0.921),47.05%</td>
<td>11.1±0.7* (1.722),117.6%</td>
<td>13.1±0.7* (1.834),156.8%</td>
<td>13.3±0.8* (2.065),160.7%</td>
</tr>
<tr>
<td>Apigenin-10mg</td>
<td>10mg/kg P.O.</td>
<td>4.5±0.2 (0.547)</td>
<td>4.8±0.4b (0.752),6.66%</td>
<td>5.8±0.4b (0.983),28.8%</td>
<td>6.5±0.2b (0.547),44.4%</td>
<td>6.4±0.3b (0.836),42.2%</td>
</tr>
<tr>
<td>Apigenin-20mg</td>
<td>20mg/kg P.O.</td>
<td>4.8±0.3 (0.752)</td>
<td>7.3±0.4* (0.983),52.8%</td>
<td>9.6±0.4* (1.032),99.37%</td>
<td>10.8±0.4* (1.169),125%</td>
<td>11.8±0.4* (1.169),139%</td>
</tr>
<tr>
<td>Apigenin-40mg</td>
<td>40mg/kg P.O.</td>
<td>4.6±0.3 (0.816)</td>
<td>6.6±0.2* (0.516),43.47%</td>
<td>9.3±0.2** (0.516),102%</td>
<td>10.1±0.4* (0.983),119%</td>
<td>11.3±0.4* (1.211),145.6%</td>
</tr>
</tbody>
</table>

*P<0.001 control vs respective group, **P<0.05 Tramadol vs respective group, bP<0.01 Tramadol vs respective group.
DISCUSSION

Natural products have been widely used as good alterna-
tives to produce new drugs and therapeutic agents for
combating diseases20. In current study apigenin expressed
potent analgesic activities in hot plate test in the mice
models as well as tail-flick test in Wister albino rats. Hot plate
and tail-flick tests are used for evaluation of the central pain
at the supraspinal and spinal levels possibly acting on a
descending inhibitory pain pathway21. The tail-flick
response is believed to be a spinally mediated reflex and the
paw-licking hot plate response is more complex supraspinal
organized behaviour22. The effectiveness of analgesic
agents in the tail-flick pain model is highly comparable with
relief of human pain Perception23. In both the model’s data
showed that the apigenin dose dependently increased the
pain threshold. The latency profile of different dose of
apigenin were comparable with standard drug tramadol.
The μ receptor stimulation is generally associated with pain
relief and has been shown to be potent in regulating thermal pain. Non-analgesic effects through the μ receptors
include respiratory depression and physical dependence.
Activation of μ2 opioid subtype leads to spinal analgesia
and commonly causes constipation as adverse effect24.
Therefore, taking all these data together we believe that
the analgesic activity of apigenin is most likely to be
mediated by central action (spinally and supraspinally) and
indicates a tramadol like mechanism by binding with opioid
receptors with producing minimal side effect. Apigenin
could be better substitute for the opioid’s drugs like
morphine for the management of chronic pain like cancer25.

CONCLUSION

Apigenin has analgesic activity in hotplate and tail-flick test
in rodent. Further in vitro and in vivo studies are
recommended to further investigate the detailed action
and mechanism of actions as well as to increase the efficacy
of apigenin for clinical application

REFERENCES

1. Kanodia L, Das S: A comparative study of analgesic property of whole plant and fruit extracts of Fragaria vesca in
2. Michel YB, Dubois Christopher G, Allen HL: Chronic pain
management. In Wylie and Churchill-Davidson’s A practice of
Anaesthesia. 7th edition. Edited by: Healy TEJ, Knight PR.
London: Hodder Arnold; 2003;1139-1235.
3. Thomas MC: Diuretics, ACE inhibitors and NSAIDs – the triple
4. Kayyalap SO: Medicinal pharmacology, in terms of rational
treatment (Rasyonel tedavi yonunden tibbi farmakoloji).
5. Whelton A, Stout RL, Spilman PS, Klassen DK. Renal effects of
Ibuprofen, Piroxicam and Sulindac in patients with
asymptomatic renal failure. A prospective, randomized cross
Pathophysiologic mechanisms of acute renal failure,
hyperkalemia, tubular necrosis and proteinuria. Arch Intern
Med 1987; 147:2107-16.
7. DiMasi JA, Ronald WH, Henry GG. The price of innovation:
new estimates of drug development costs. J Health
Economics 2003;22: 151–185
lipopolysaccharide-induced elevation of β-amyloid
generation and memory deficiency. Brain Res, 2009; 1250:
164–174.
In Immunopharmaceuticals, ed. E.S. Kimball, 1996;227–257.
Boca Raton: CRC Press.
11. Ornano, L.Venditti, A.; Donno, Y.; Sanna, C.; Ballero, M.;
Blanco, A. Phytochemical analysis of non-volatile fraction of
Artemisia caerulescens subs. densiflora (Viv.) (Asteraceae),
an endemic species of La Maddalena Archipelago (Sardinia–
Montella, M.; Franceschi, S.; La Vecchia, C. Flavonoids and
ovarian cancer risk: A case-control study in Italy. Int. J. Cancer
13. Bosetti, C, Sertiini, L; Parpinel, M.; Gnagnarella, P.; Lagiou,
P.; Negri, E.; Franceschi, S.; Montella, M.;Peterson, J; Dwyer,
J.; et al. Flavonoids and Breast Cancer Risk in Italy. Cancer
cohortcomparison of flavonoid treatment in patients with
rected colorectal cancer to prevent recurrence. World J.
15. Kumar, H.; More, S.V.; Han, S.-D.; Choi, J.-Y.; Choi, D.-K.
Promising Therapeutics with Natural Bioactive Compounds
for Improving Learning and Memory—A Review of
16. Smolinski AT, Pestka JJ. Modulation of lipopolysaccharide-
induced proinflammatory cytokine production in vitro and in
vivo by the herbal constituents apigenin (chamomile),
ginsenoside Rb1(1) (ginseng) and patenolide (fervfew).
17. D’Amour FE, Smith DL. A method for determining loss of pain
sensation. J Pharmacol Exp Ther 1941; 72: 74–79
18. Prempeh ABA, Mensah AJ. Analgesic activity of crude
inflammatory and analgesic activities of
arthrocnemoidae extract of Xanthoxyloides.
Ghana Med J 2008 June; 42(2): 79-84
19. M.V. Amberkar, S. Tara, M. Kumari, K.L. Bairy, and S. Shenoy,
Evaluation of anti-inflammatory and analgesic activities of
alcoholic extract of Kaempferia galanga in rats. Indian Journal
20. Abdelkhalede NK, Ghaziy EW, Abdel-Daim MM.
Pharmacodynamic interaction of Spirulina platensis and
deltamethrin in freshwater fish Nile tilapia, Oreochromis
niloticus: impact on lipid peroxidation and oxidative stress.

Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: globalresearchonline@rediffmail.com
New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com