INTRODUCTION

Parkinson's disease (PD) is the progressive neurodegenerative disorder caused as a consequence of degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc) in the mid brain. PD affected person shows motor symptoms such as rigidity, tremors at rest and gait disturbances as well as non-motor symptoms such as sleep disturbance, olfactory dysfunction, cognitive disturbance and CNS depression. There is no effective cure for PD since currently available drugs can't stop and reverse the progression of the disorders and produce more side effects such as depression, confusion, hallucination, insomnia, anxiety, myocardial infarctions and hepato toxicity. Therefore the recent research mainly focused on searching newer drugs from plants having effective therapeutic properties against progression of disorder with less side effects. Neuroleptic-induced catalepsy has long been used as a model for the extrapyramidal side effects (EPS), such as parkinsonian-like catalepsy associated with antipsychotic use in humans. Evidences indicate that haloperidol induces catalepsy in animals, and this behavior response has long been used as a model for EPS effects.

The present investigation was aimed to evaluate the protective capacity of herbal drug Rheum emodi against haloperidol induced Parkinson's disorder in rat.
Plant description

*Rheum emodi* or Himalayan rhubarb is known by various vernacular names in different geographical regions or system.17–23

<table>
<thead>
<tr>
<th>Language/System</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Indian Rhubarb or Himalayan Rhubarb</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>Gandhini, Revatchini Hindi Dolu, Pita</td>
</tr>
<tr>
<td>Kashmiri</td>
<td>Pumbehakh</td>
</tr>
<tr>
<td>Tamil</td>
<td>Nattu-ireval-chini, Nattu-manjal-chinni-kizhangu</td>
</tr>
<tr>
<td>Telgu</td>
<td>Nattu-revalchini</td>
</tr>
<tr>
<td>Arabic</td>
<td>Rewand</td>
</tr>
<tr>
<td>Persian</td>
<td>Rewandchini</td>
</tr>
<tr>
<td>Ayurvedic</td>
<td>Amlaparni, pitamuuli, Gandhini Revatikka</td>
</tr>
<tr>
<td>Siddha</td>
<td>Revalchinikkattai, Nattirevaichini</td>
</tr>
<tr>
<td>Unani</td>
<td>Revandchini</td>
</tr>
</tbody>
</table>

Classification

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clade</td>
<td>Angiosperm</td>
</tr>
<tr>
<td>Clade</td>
<td>Eudicots</td>
</tr>
<tr>
<td>Clade</td>
<td>Core eudicots</td>
</tr>
<tr>
<td>Order</td>
<td>Caryophyllales</td>
</tr>
<tr>
<td>Family</td>
<td>Polygonaceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Rheum</td>
</tr>
<tr>
<td>Species</td>
<td><em>R. emodi</em></td>
</tr>
</tbody>
</table>

Occurrence and distribution

*Rheum emodi* is a stout herb, endemic to the Himalayan region distributed in the temperate and subtropical region from Kashmir to Sikkim at an elevation of 2800-3000m in India. It grows in the alpine zone on rocky soils, moraines and cervices.24–27

Botanical description

*Rheum emodi* Wall. ex Meissn. is a leafy perennial herb 1.5-3.0 m in height. Roots very stout. Radical leaves large petioled, very large, often 60 cm in diameter, orbicular or broadly ovate obtuse, base cordate 5-7 nerved, papillose beneath, subscaberulous above; petiole 30-45 cm, very stout, scaberulous. Panicle is 0.6-0.9 m, papillosely puberulous, fastigiately branched and leafy with erect strict branches; flowers small 3 mm diameter, dark purple or pale red, in axillary panicles. Fruit ovoid-oblong, 13 mm long, purple,

base cordate, apex notched, wings narrower than the disk. Roots and rhizomes are the main parts used as drug and are collected in October to November. Root of Indian Rhubarb is darker, inferior in aroma, coarser and untrimmed, is not decorticated. Fresh rhizome is 6 to 12 inches long, and the freshly fractured surface is dull orange to yellowish brown.28

Phytochemistry

*Rheum emodi* possess a number of phytoconstituents and these are: anthraquinones, anethrols, stilbenes, oxanthrone ethers and esters, flavonoids, lignans, phenols, carbohydrate and oxalic acid. The most common constituents of *Rheum emodi* are anthraquinone and stilbene. Anthraquinones include rhein, chrysophanol, aloe-emodin, emodin, physcion (emodin monomethyl ether), chrysophanein and emodin glycoside. Stilbene includes piceatannol, resveratrol and their glycosides. Different derivatives of oxanthrone include oxanthrone ether (revandchinone-4), oxanthrone esters (revandchinone-1 and revandchinone-2), and revandchinone-3. Other complex compounds have also been reported, including torachrysone 8-O-b-D-glucoside, sulfated anthraquinone glycoside sulfemodon 8-O-b-D-glucoside b-asarone and rhein 11-O-b-D-glucoside Tannins are also present in rhubarb Journal of Pharmacognosy and Phytochemistry which includes hydrolysable tannins, containing ester or glycosidic bonds composed of gallic acid, glucose and other monosaccharides and condensed tannins, derived primarily from the flavone derivatives catechin and leucocyanidin.28–32

Pharmacological actions and traditional uses

*Rheum emodi* is considered as purgative, stomachic, and astringent tonic. It also possesses aperient, emmenagogue and diuretic properties. Root is regarded as expectorant and appetizer. Anti-inflammatory, anti-dysenteric and alexeric actions have also been ascribed. *Rheum emodi* is widely used in various traditional systems such as, Unani, Ayurveda, Chinese etc. *Rheum emodi* is used as a purgative and astringent tonic. Its primary action is of mild purgation; but it has also astringent property, so that it’s secondary effect is to confine the bowels, hence it is well fitted for use in simple diarrhoea, but not in constipation or any affection in which a continuous aperients action is necessary. It is useful remedy in ailments of children. For the errors in diet of children and for the diarrhoea set up by un digested food, it is best given combined with sodium bicarbonate or magnesium. Rhein (4, 5-Dihydroxyanthraquinone-2-carboxylic acid, is the only anthraquinone that is absorbed into cerebrospinal fluid of TBI (Traumatic Brain Injury) patients after *Rheum emodi* administration. Thus, rhein derived from *Rheum emodi* is responsible for most of the observed neuroprotection. *Rheum emodi* forms an important ingredient of a large variety of compound. Combined with ginger it may be given in the form of pills in cases where the bowels are sluggish. Root is regarded as panacea in local home remedies and is used in stomach problems, cuts, wound, and muscular swelling, tonsillitis and mumps. Some persons chew the root, and to them this is a very good way of taking it. Powdered roots are used for cleaning teeth.
and sprinkled over ulcers for quick healing. Ethnobotanically, leaves and stalks are consumed as vegetables after cooking. In Assam its leaves consumed as vegetables and cultivated for this purpose. Leaves are also dried and stored for consumption along with other foods, or made into a preserve. It is however stated that cooked rhubarb stalks act as a powerful purgative. Besides the medicinal uses, it is also used for coloration of textile and wooden material.

MATERIALS AND METHODS

Collection and authentication of plant material

The Powder of Rhizome of Rhubarb (Rheum emodi) had been procured from VHCA AYURVEDA LLP. Haryana.

Experimental Animal

The experiment was performed on wistar rats (weighing 150-250g), which were obtained from the animal house of Department of Pharmacology, Vidyabharati college of Pharmacy, Amaravati. All the animals were acclimatized to animal house prior to use. They are kept in cage in animal house with 12h light: 12h dark cycle. Animals were fed on pellets and tap water ad libitum. The care and handling of rat were in accordance with the internationally accepted standard guidelines for use of animals (CPCSEA) permission and approval for animal studies were obtained from the Institutional Animal Ethics Committee (IAEC) of Vidyabharati College Of Pharmacy, Amaravati. SGB Amaravati University.

Drugs and chemicals

Standard Drug

1. Haloperidol injection IP (serenace) manufactured by RPG life science Ltd. was used to induce Parkinsonism in rats.
2. Levodopa and carbidopa tablet (syndopa 110) was used as standard drug.

Other Chemical

Saline water, Ethanol (90%), DPPH, Ascorbic acid, HCl, 0.1N NaOH, chloroform, ferric chloride, 40% sodium hydroxide. The chemicals used and other solutions were all of analytical grade. All drugs and reagents were prepared immediately before use.

Extraction method

Extraction of plant material by maceration method

Maceration of 150 g of the powder of dried rhizome part of Rheum emodi in 350 ml of Ethanol solvents was carried out. The mixture was shaken by an electrical shaker at room temperature for 48 h. After that time, the mixture was filtered and the solvent was removed on a rotary evaporator. After drying the residue at 70 °C in an electrical oven, a yellow powder was obtained.

Solubility analysis

The solubility analysis of ethanolic extract of Rheum emodi has been carried out using different solvent. Extract was found to be soluble in water, freely soluble in hot water.

Determination of Acute Toxicity LD₅₀

The acute toxicity of prepared extract was performed using OECD guideline 425 in Following manner:

Selection of Animal species & housing:

For the acute toxicity study the Female rats were used, as Female rats are more sensitive than Male rats. All the test animals were kept in separate cages at least 5 days before the commencement of toxicity test. Animals were maintained at 22 ± 3°C in (12:12) light &Dark cycle with free access of Food and Water.

Preparation of doses

During each study procedure Fresh aqueous solution of root extract of Rheum emodi was made and each time same volume of dose was administered by varying the conc. of the drug extract.

Test procedure

The required dose is administered in animal one at a time by using oral gavage The animal (Rats) were fasted overnight but water was not withdrawn. The fasted body weight of rat is determined and Dose is calculated on body weight basis after administration of Rheum emodi extract the food is withheld for further 3-4 h. For limit test 2000 mg/kg dose was administered in one animal and then the animal was observed for mortality for a period of 48 h the tested rat was survived therefore test was continue by taking 4 more animals.

In main test dose of 1.75, 5.5, 17.5, 55, 175, 550, 2000 was selected and was administered in animal one at a time. The animal was observed for any toxic symptoms initially for 1h. interval for 4 h. then periodically for up-to 14 days.

Selection of Dose groups

1. On the basis of acute toxicity study data. It was conclude that LD₅₀ of Rheum emodi extract is upto 2000mg/kg.
2. Therefore the test groups were divided as 100mg (low dose),200 mg (medium dose), 400mg (high dose).

Determination of Antiparkinsons Activity

The Antiparkinson’s potential of ethanolic roots extract of Rheum emodi has been carried out by using haloperidol induce model in wistar rat of either sex weighing 150-250 gm.13

Induction of experimental Parkinsonism

Haloperidol causes dysfunctioning of various neurotransmitters such as acetylcholine, GABA, and serotonin. Pathology of haloperidol induced catalepsy underlying increased oxidative stress. Haloperidol, an
antipsychotic drug, blocks central dopamine receptor in striatum. It also produces a behavioral state in rats in which they fail to correct externally imposed postures (called catalepsy); thus, keeping the above fact in mind, the haloperidol induced catalepsy model was selected. The method was followed for the anticataleptic activity. Wistar rats weighing 150-250g taken and haloperidol at a dose of 1mg/kg i.p was administered chronically to the rats for a period of 14 days to induce PD. All the behavioural assessment was carried out on 4th day, 8th day and 14th day of the study and the last behavioural quantification was done 24 hours after the last dose of Haloperidol.

**Behavioural assessment**

**Cataleptic activity**

**Bar test**

Catalepsy, defined as a reduced ability to initiate movement and a failure to correct abnormal posture, was measured by means of the bar test. To test of catalepsy, animals were positioned so that their hindquarters were on the bench, and their forelimbs rested on a 1 cm diameter horizontal bar, 6–9 cm above the bench. The length of time that animal maintained this position was recorded by stopwatch to a maximum of 180 s (mean of three consecutive trials; interval: 1 min). Animals would determine judge to be cataleptic if they maintained this position for 30 s or more.

![Figure 8: Bar Test](image)

**Experimental design**

Rats were divided into six group with six animal in each. The first group received an oral dose of vehicle (10 ml/kg), second group received inducing agent (haloperidol 1mg/kg), third group received standard drug (levodopa+carbidopa 10 mg/kg) along with haloperidol (1mg/kg), and fourth, fifth, and sixth group received extract of *Rheum emodi* at 100mg, 200mg, 400mg/kg

**Treatment protocol**

Briefly, the animal were divided into six groups (n = 6) and treated with respective test solutions as given below.

1. **Group 1 (Vehical control)** - Vehicle (distilled water 10 ml/kg)po
2. **Group 2 (Negative control)** - Haloperidol (1mg/kg)ip
3. **Group 3 (Positive control)** - levodopa+carbidopa (10mg/kg)+ Haloperidol (1mg/kg)ip
4. **Group 4 (Low dose)** - EERE(100mg/kg)po + Haloperidol (1mg/kg)ip
5. **Group 5 (Moderate dose)** - EERE(200mg/kg)po + Haloperidol (1mg/kg)ip
6. **Group 6 (Highest dose)** - EERE(400mg/kg)po + Haloperidol (1mg/kg)ip

**Statistical analysis**

All the data were expressed as mean ± standard error of the mean. Statistical significance between more than two groups was tested using one-way ANOVA followed by the Dunnet’s test.

**DISCUSSION**

In the present study, the animals which were treated for 14 days with haloperidol showed severe cataleptic responses. The pathogenesis of PD includes oxidative stress, protein accumulation like a-synuclein, mitochondrial dysfunction, apoptosis, and neuronal excitotoxicity. Among all, oxidative stress is a crucial pathological mechanism for PD.

In the present study, we evaluated the effect of EERE in haloperidol induced Parkinson disease in experimental animals. Haloperidol induced catalepsy is a widely accepted animal model of PD. Haloperidol (nonselectiveD2 dopamine antagonists) provides a pharmacological model of parkinsonism by interfering with the storage of catecholamine’s intracellularly, resulting in dopamine depletion in nerve endings. In this study, haloperidol (1mg/kg, i.p.) induced significant catalepsy in rats as evidenced by a significant increase in the time spent on the bar as compared to vehicle treated animals. Treatment with EERE significantly reduced the catalepsy in haloperidol treated rats in dose dependent manner. The EERE at doses of 100, 200 and 400 mg/kg showed protective effect against haloperidol induced catalepsy in bar test, indicated that this plant may have an ability to protect dopaminergic neurotransmion in striatum. EERE may also be effective in decreasing the oxidative stress in the haloperidol treated animals possibly due to its antioxidant activity. The phytochemical screening of EERE reveals presence of flavonoids and polyphenols such as Emodin and Aloemodin. Antioxidant activity of plant may be due to presence of these flavonoid and polyphenols which may be responsible for neuroprotection and preventing the oxidative stress in parkinsons diseases.
Effect of extract of EERE on Catelepsy Bar Test on haloperidol induced catepsy in rat.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment and doses</th>
<th>4 th day Cateleptic score No. seconds/3min.</th>
<th>8 th day Cateleptic score No. seconds/3min</th>
<th>14 th day Cateleptic score No. seconds/3min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Control (vehicle) 10ml/kg po.</td>
<td>3.500 ± 0.1693</td>
<td>3.817 ± 0.3081</td>
<td>3.550 ± 0.1996</td>
</tr>
<tr>
<td>2.</td>
<td>Negative control Haloperidol (1mg/kg i.p.)</td>
<td>7.66 ± 0.1333##</td>
<td>58.267 ± 2.683##</td>
<td>113.73 ± 6.2390##</td>
</tr>
<tr>
<td>3.</td>
<td>Positive control (Levodopa+Carbidopa), 10 mg/kg.i.p. + Haloperidol (1mg/kg i.p.)</td>
<td>3.550 ± 0.1996</td>
<td>23.66 ± 0.5315</td>
<td>78.267 ± 0.2963</td>
</tr>
<tr>
<td>4.</td>
<td>EERE (100mg/kg) + Haloperidol (1mg/kg i.p.)</td>
<td>5.183±0.3049****</td>
<td>47.867±1.491****</td>
<td>95.750±0.2232****</td>
</tr>
<tr>
<td>5.</td>
<td>EERE (200mg/kg)+ Haloperidol (1mg/kg i.p.)</td>
<td>4.367±0.1687****</td>
<td>35.233±0.9898****</td>
<td>85.117±0.1400****</td>
</tr>
<tr>
<td>6.</td>
<td>EERE (400mg/kg)+Haloperidol (1mg/kg i.p)</td>
<td>3.683±0.1721****</td>
<td>24.300±0.5774****</td>
<td>79.967±0.1350****</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, one-way ANOVA followed by Dunnett’s test multiple comparison test. ** ** indicates P<0.001 when compare to Negative control. ## indicates P<0.001 when compare to control group.

CONCLUSION

Ethanolic extract of Rheum emodi significantly reduced the symptoms of Parkinson’s disease may be due to antioxidant and neuroprotective activities or increase in the level of brain dopamine similar to L-dopa and carbidopa. Thus, Ethanolic extract of Rheum emodi may have therapeutic potential in the treatment of PD. Further, it is necessary to estimate the brain dopamine level and isolate the individual constituents responsible for neuroprotective potential, and also characterization of active constituents responsible for neuroprotective effect. It could be the next better, safer & cheaper herbal alternate in management of Parkinsonism and also modulation of herbal drug with dopaminergic agonist to potentiate the activity.
REFERENCES


3. Kui lu1, Cheng Zhang, Wenjun Wu, Min Zh, Yamei Tang and Ying Peng Department J AKm Coll Neurology, Zhongshan City People’s Hospital, Zhongshan, Guangdong,(, 2014).


Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: globalresearchonline@rediffmail.com
New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com